

ICS-1500 ION CHROMATOGRAPHY SYSTEM OPERATOR'S MANUAL

© 2003 Dionex Corporation

Document No. 031917 Revision 01 March 2003 ©2003 by Dionex Corporation All rights reserved worldwide. Printed in the United States of America.

This publication is protected by federal copyright law. No part of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or transmitted into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties without the express written permission of Dionex Corporation, 1228 Titan Way, Sunnyvale, California 94088-3603 U.S.A.

DISCLAIMER OF WARRANTY AND LIMITED WARRANTY

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. DIONEX CORPORATION DOES NOT WARRANT, GUARANTEE, OR MAKE ANY EXPRESS OR IMPLIED REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THIS PUBLICATION IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. FURTHER, DIONEX CORPORATION RESERVES THE RIGHT TO REVISE THIS PUBLICATION AND TO MAKE CHANGES FROM TIME TO TIME IN THE CONTENT HEREINOF WITHOUT OBLIGATION OF DIONEX CORPORATION TO NOTIFY ANY PERSON OR ORGANIZATION OF SUCH REVISION OR CHANGES.

TRADEMARKS

MMS[™] MicroMembrane[™] Suppressor is a trademark of Dionex Corporation.

AES® Atlas Electrolytic Suppressor, Chromeleon®, OnGuard®, and SRS® Self-Regenerating Suppressor are registered trademarks of Dionex Corporation.

Teflon® is a registered trademark of E.I. duPont de Nemours & Co.

Windows® is a registered trademark of Microsoft Corporation.

PRINTING HISTORY

Revision 01, March 2003

1 • Introduction

1.1	Introdu	uction to Ion Chromatography (IC)	1-1
1.2	Overvi	iew of the ICS-1500	1-4
1.3	About	This Manual	1-5
	1.3.1	Safety Messages and Notes	1-6
	1.3.2	Safety Labels	1-8

2 • Features

2.1	Operat	ting Features	
	2.1.1	Front Panel	
	2.1.2	Top Cover	
	2.1.3	Component Panel	
	2.1.4	Rear Panel	
2.2	Flow S	Schematic	
2.3	The Cl	hromeleon Interface	
	2.3.1	The Chromeleon Main Window and Browser	
	2.3.2	The ICS-1500 Control Panels	
2.4	Systen	n Component Details	
	2.4.1	Vacuum Degas Assembly (Optional)	
	2.4.2	Eluent Valve	
	2.4.3	Pump	

2.4.4	Injection Valve
2.4.5	Column Heater
2.4.6	Suppressor
2.4.7	DS6 Heated Conductivity Cell2-30

3 • Operation and Maintenance

3.1	Operation Overview		
3.2	Power Up the System		
3.3	Start C	Chromeleon	
3.4	Set Up	the Eluent Reservoir	
	3.4.1	Prepare the Eluent	
	3.4.2	Degas the Eluent	
	3.4.3	Filter the Eluent	
	3.4.4	Fill the Reservoir	
	3.4.5	Set the Eluent Level	
	3.4.6	Connect the Reservoir	
3.5	Check	All Connections	
3.6	Prime the Pump		
3.7	Set System Operating Conditions		
3.8	Equilibrate the System and Verify Operational Status		
3.9	Prepar	e Samples	
	3.9.1	Collecting and Storing Samples	
	3.9.2	Pretreating Samples	
	3.9.3	Diluting Samples	

3.10	10 Loading and Injecting Samples		
	3.10.1	Loading Samples with a Syringe	
	3.10.2	Loading Samples with a Vacuum Syringe	
	3.10.3	Loading Samples with an Autosampler	
	3.10.4	Injecting Samples	
	3.10.5	Example Chromeleon Commands for Loading and Injecting Samples	
3.11	Process	s Samples	
	3.11.1	Manual Sample Processing	
	3.11.2	Automatic (Batch) Sample Processing	
3.12	Mainte	nance	

4 • Troubleshooting

4.1	Alarms and Error Conditions	4-3
4.2	Liquid Leaks	4-9
4.3	Pump Difficult to Prime or Loses Prime	.4-11
4.4	Pump Does Not Start	.4-13
4.5	No Flow	.4-14
4.6	Erratic Flow/Pressure Reading	.4-15
4.7	Excessive System Backpressure	.4-15
4.8	Peak "Ghosting"	.4-16
4.9	Nonreproducible Peak Height or Retention Time	.4-17
4.10	Abnormal Retention Time or Selectivity	.4-17
4.11	No Cell Response	.4-18
4.12	High Cell Output	.4-18

4.13	Baseline Noise or Drift	. 4-19
4.14	Vacuum Degas Assembly Does Not Run	. 4-20

5 • Service

5.1	Diagnostic and Calibration Procedures		
	5.1.1	Chromeleon Wellness Panel Overview	5-2
	5.1.2	Diagnostic and Calibration Touch Screen Overview .	5-4
	5.1.3	Calibrating the Conductivity Cell	5-5
	5.1.4	Calibrating the Flow Rate	5-8
	5.1.5	Calibrating the Vacuum Degas Assembly	5-10
5.2	Isolati	ng a Restriction in the Liquid Lines	5-11
5.3	Replac	cing Tubing and Fittings	5-13
5.4	Rebuil	ding the Injection Valve	5-14
5.5	Cleaning and Replacing the Pump Check Valves		
5.6	Replac	cing a Pump Piston Seal and Piston Rinse Seal	5-17
5.7	Replac	cing a Pump Piston	5-21
5.8	Replac	cing the Waste Valve or Priming Valve O-Ring	5-22
5.9	Replac	cing the Conductivity Cell	5-24
5.10	Replac	ring the Suppressor	5-27
5.11	Replac	ring the Column Heater	5-28
5.12	Replac	ring the Column Heater Heat Exchanger	5-31
5.13	Replac	ring the Eluent Valve	5-32
5.14	Replac	cing the Leak Sensor	5-34
5.15	Primin	ng with Isopropyl Alcohol	5-35

5.16 Changing Main Power Fuses	5-36
--------------------------------	------

A • Specifications

A.1	Electrical
A.2	Physical A-1
A.3	Environmental
A.4	Front Panel
A.5	Pump
A.6	Detector
A.7	Conductivity Cell with Heat Exchanger
A.8	Injection Valve
A.9	Vacuum Degas Assembly (Optional) A-3
A.10	Column Heater

B • Installation

B.1	Facilit	y Requirements	
B.2	Unpacking the ICS-1500 System B		
	B.2.1	Unpacking the Computer (North America only) B-4	
	B.2.2	Unpacking the Computer (outside North America) B-4	
B.3	Installi	ng Chromeleon B-5	
B.4	Installi	ng the Chromeleon Software License B-6	
B.5	Conne	cting the ICS-1500 to the Chromeleon PC B-9	
	B.5.1	Connecting the ICS-1500 to the PC B-9	
	B.5.2	Connecting Additional USB Devices B-10	

B.6	Connecting the Power Cord		
B.7	Turning On the ICS-1500 Power		
B.8	Setting	Up Chromeleon	B-13
	B.8.1	Assigning the ICS-1500 to a Timebase	B-13
	B.8.2	Assigning DX-LAN Devices to the Timebase (Optional).	B - 16
B.9	Installi	ng and Plumbing the Columns and Suppressor	B-19
	B.9.1	Column Heater Setup	B-19
	B.9.2	Installing the Columns	B-20
	B.9.3	Installing the Suppressor	B-2 1
B.10	Connec	cting the Waste Lines	B-23
	B.10.1	Installing the Gas Separator Waste Tube	B-23
B.11	Setting	Up the Eluent Reservoir	B-25
B.12	Setting	g Up a Chromeleon Application	B-26
	B.12.1	Verifying Chromeleon Communication	B-35
B.13	Setting	the Eluent Level	B-35
B.14	Primin	g the Pump	B - 37
	B.14.1	Priming the Eluent Lines with a Syringe	B-37
	B.14.2	Priming with the Prime Button	B-39
B.15	Equilib	prating the System	B-40
B.16	Verifyi	ng Operational Status	B-40
B.17	Connec	cting an AS50 Autosampler (Optional)	B-4 1
	B.17.1	AS50 Configuration Requirements	B-4 1
	B.17.2	AS50 Connections	B-42
	B.17.3	Enable AS50 Control of the Injection Valve	B - 44
B.18	Connec	cting an AS40 Automated Sampler (Optional)	B-45

B.19	Analog Output Connection (Optional) B-47
B.20	Pressurizing the Eluent Reservoir (Optional) B-47
	B.20.1 Connecting the Gas Source (Optional) B-48
	B.20.2 Pressurizing the Eluent Reservoir (Optional) B-49
B.21	Pump Continuous Seal Wash Connections (Optional) B-50
B.22	Manually Connecting to a Control Panel B-52
B.23	Installation Troubleshooting B-54

C • Touch Screen Operation

C.1	Using	the Touch Screen
C.2	Using the Touch Screen with Chromeleon	
C.3	Overview of ICS-1500 Touch Screen Pages	
C.4	Home Page	
	C.4.1	Home Page Pump Controls
	C.4.2	Home Page Column Heater
	C.4.3	Home Page Injection Valve Controls
	C.4.4	Home Page Detector Controls
	C.4.5	Other Home Page Controls
C.5	Plot Pa	age C-10
C.6	Status	Page
	C.6.1	Viewing Other Status Parameters
	C.6.2	Status Parameter Details C-15
C.7	Pump	Page
	C.7.1	Setting Pump Pressure Limits and Selecting the Pressure Unit

	C.7.2	Setting Degas Operating Parameters (Optional)C-16
	C.7.3	Controlling the Eluent Valve
C.8	Suppre	essor Page
C.9	C.9 Detector Page	
	C.9.1	Setting the Data Rise TimeC-19
	C.9.2	Selecting the Conductivity PolarityC-20
	C.9.3	Setting Analog Out Options
C.10	Inform	ation PageC-22
C.11	Modul	e Setup PageC-23
C.12	Input/0	Dutput PageC-24
C.13	Diagno	ostic and Calibration PagesC-25

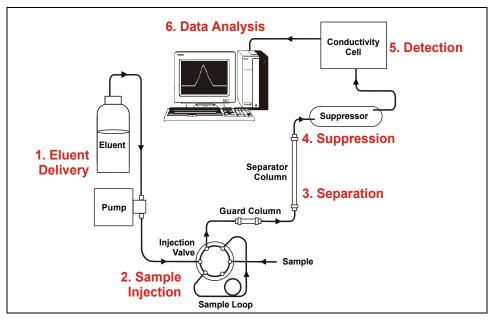
D • TTL and Relay Control

D.1	TTL and Relay ConnectionsD-	
	D.1.1 Selecting TTL Input Functions and Control Types	
D.2	Controlling TTL and Relay OutputsD-5	
D.3	Example Setup for Stand-Alone OperationD-8	

E • Reordering Information

F • FAQ

F.1	How do I hook up an autosampler?	F-1
F.2	How do I print?	F-1
F.3	Why are the retention times moving?	F-1


F.4	How do I adjust retention times?
F.5	When should I remake standards? F-2
F.6	When should I remake eluents? F-2
F.7	How do I start Chromeleon? F-2
F.8	How do I delete data? F-2
F.9	How do I back up data?
F.10	How do I shut off the system? F-2
F.11	How do I store columns?
F.12	How do I know when a column is dirty?
F.13	How do I clean a column? F-3
F.14	Why is the conductivity high? F-3

G • Glossary

1.1 Introduction to Ion Chromatography (IC)

The Dionex ICS-1500 Ion Chromatography System (ICS-1500) performs ion analyses using suppressed or non-suppressed conductivity detection. An ion chromatography system typically consists of a liquid eluent, a high-pressure pump, a sample injector, a guard and separator column, a chemical suppressor, a conductivity cell, and a data collection system.

Before running a sample, the ion chromatography system is calibrated using a standard solution. By comparing the data obtained from a sample to that obtained from the known standard, sample ions can be identified and quantitated. The data collection system, typically a computer running chromatography software, produces a chromatogram (a plot of the detector output vs. time). The chromatography software converts each peak in the chromatogram to a sample concentration and produces a printout of the results.

A typical IC analysis consists of 6 stages (see Figure 1-1).

Figure 1-1. Ion Analysis Process

1. Eluent Delivery

• Eluent, a liquid that helps to separate the sample ions, carries the sample through the ion chromatography system. The ICS-1500 is an isocratic delivery system. This means that the eluent composition and concentration remain constant throughout the run.

2. Sample Injection

- The liquid sample is loaded into a sample loop either manually or automatically (if an automated sampler is installed). When triggered, the ICS-1500 injects the sample into the eluent stream.
- The pump pushes the eluent and sample through the guard and separator columns (chemically-inert tubes packed with a polymeric resin). The guard column removes contaminants that might poison the separator column.

3. Separation

• As the eluent and sample are pumped through the separator column, the sample ions are separated. In the ICS-1500, the mode of separation is called ion exchange. This is based on the premise that different sample ions migrate through the IC column at different rates, depending upon their interactions with the ion exchange sites.

4. Suppression

• After the eluent and sample ions leave the column, they flow through a suppressor that selectively enhances detection of the sample ions while suppressing the conductivity of the eluent.

5. Detection

• A conductivity cell measures the electrical conductance of the sample ions as they emerge from the suppressor and produces a signal based on a chemical or physical property of the analyte.

6. Data Analysis

- The conductivity cell transmits the signal to a data collection system.
- The data collection system (for the ICS-1500, this is Chromeleon®) identifies the ions based on retention time, and quantifies each analyte by integrating the peak area or peak height. The data is quantitated by comparing the sample peaks in a chromatogram to those produced from a standard solution. The results are displayed as a chromatogram and the concentrations of ionic analytes can be automatically determined and tabulated.

1.2 Overview of the ICS-1500

The ICS-1500 is an integrated ion chromatography system containing a pump, injection valve, column heater, and conductivity detector. Other system components, including a guard column, separator column, and suppressor vary, depending on the analyses to be performed.

The ICS-1500 can optionally be configured with a vacuum degas assembly, for online eluent degassing.

ICS-1500 operation can be controlled in one of two ways:

- Remotely, with a personal computer running Windows® 2000 or Windows XP and Chromeleon software (version 6.5 SP2 or later). Chromeleon also provides data acquisition and data processing functions.
- Locally, with the front panel LCD touch screen. The touch screen is used for instrument control only. It does not provide data acquisition and data processing functions. An analog output on the rear panel can be connected to a separate data acquisition device.

For communication between the ICS-1500 and Chromeleon, the ICS-1500 is connected to a USB (Universal Serial Bus) port on the computer or a USB hub. For installation instructions, see <u>Section B.5</u> and also refer to *Installing the Chromeleon IC System* (Document No. 031883).

1.3 About This Manual

Chapter 1 Introduction	Introduces ion analysis and the ICS-1500; explains the conventions used in this manual, including safety-related information.
Chapter 2 Features Overview	Provides an overview of ICS-1500 operating features and system components; introduces the Chromeleon user interface.
Chapter 3 Operation and Maintenance	Provides operating instructions and describes routine preventive maintenance procedures.
Chapter 4 Troubleshooting	Lists problems and presents step-by-step procedures for how to isolate and eliminate the cause of each problem.
Chapter 5 Service	Provides step-by-step instructions for routine service and parts replacement procedures that the user can perform.
Appendix A Specifications	Lists the ICS-1500 specifications and installation site requirements.
Appendix B Installation	Describes how to install the ICS-1500.
Chapter C Touch Screen Operation	Describes the operating features available from the front panel touch screen.
Appendix D TTL and Relay Control	Describes the ICS-1500 TTL and relay control features.
Appendix E Reordering Information	Lists spare parts for the ICS-1500.
Appendix F FAQ	Provides answers to frequently asked questions about ICS-1500 operation.
Appendix G Glossary	Defines terms commonly used in ion analysis.

1.3.1 Safety Messages and Notes

This manual contains warnings and precautionary statements that can prevent personal injury and/or damage to the ICS-1500 when properly followed. Safety messages appear in bold type and are accompanied by icons, as shown below.

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. Also used to identify a situation or practice that may seriously damage the instrument, but will not cause injury.

IMPORTANT

Indicates that the function or process of the instrument may be impaired. Operation does not constitute a hazard.

Messages d'avertissement en français

Signale une situation de danger immédiat qui, si elle n'est pas évitée, entraînera des blessures graves à mortelles.

Signale une situation de danger potentiel qui, si elle n'est pas évitée, pourrait entraîner des blessures graves à mortelles.

Signale une situation de danger potentiel qui, si elle n'est pas évitée, pourrait entraîner des blessures mineures à modérées. Également utilisé pour signaler une situation ou une pratique qui pourrait gravement endommager l'instrument mais qui n'entraînera pas de blessures.

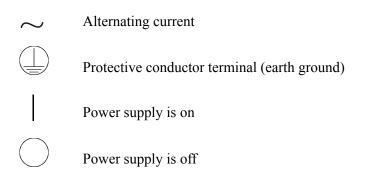
Warnhinweise in Deutsch

Bedeutet unmittelbare Gefahr. Mißachtung kann zum Tod oder schwerwiegenden Verletzungen führen.

Bedeutet eine mögliche Gefährdung. Mißachtung kann zum Tod oder schwerwiegenden Verletzungen führen.

Bedeutet eine mögliche Gefährdung. Mißachtung kann zu kleineren oder mittelschweren Verletzungen führen. Wird auch verwendet, wenn eine Situation zu schweren Schäden am Gerät führen kann, jedoch keine Verletzungsgefahr besteht.

Notes


Informational messages also appear throughout this manual. These are labeled NOTE and are in bold type:

NOTE NOTES call attention to certain information. They alert you to an unexpected result of an action, suggest how to optimize instrument performance, etc.

1.3.2 Safety Labels

The ICS-1500 meets EN 61010-1:1993 (safety), CAN/CSA-C22.2 No. 1010.1-92 (safety), UL 3101-1/10.93 (safety), EN 50082-1:1992 (susceptibility), EN 55011:1991 (emissions). The TUV GS, C, US Mark safety labels and the CE Mark label on the ICS-1500 attest to compliance with these standards.

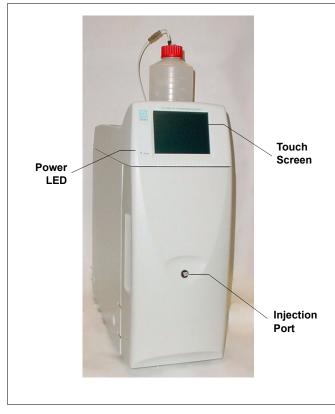
The symbols below appear on the ICS-1500 or on ICS-1500 labels.

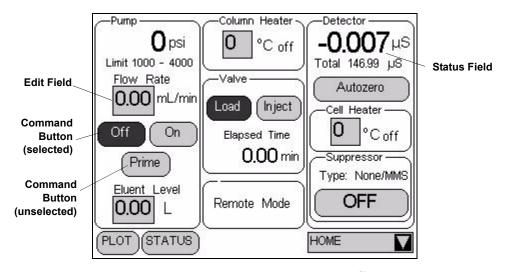
This chapter describes key ICS-1500 features and introduces the Chromeleon user interface.

2.1 Operating Features

2.1.1 Front Panel

Figure 2-1 illustrates the front panel of the ICS-1500.



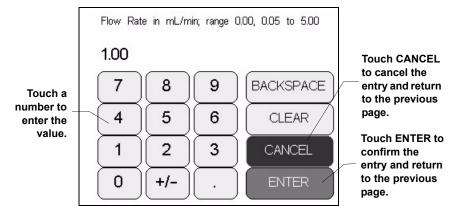

Figure 2-1. ICS-1500 Front Panel

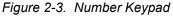
Injection Port

The sample to be analyzed can be injected manually into the injection port, using a syringe. For automated sample injection, the ICS-1500 must be connected to an autosampler. For more information about sample injection, see <u>Section 3.10</u>.

Touch Screen

The LCD touch screen provides local control of most ICS-1500 functions. You can control many of these functions directly on the touch screen's **HOME** page (see Figure 2-2). From the **HOME** page you can also go to a series of pages where you can access all other locally controlled ICS-1500 operating functions.


Summary of Touch Screen Operation


Figure 2-2. ICS-1500 Touch Screen Home 🟠 Page

- NOTE To adjust the screen contrast, open the front door and adjust the knurled knob under the screen (see Figure 2-8).
- Edit fields and command buttons have blue text on a shaded background. Fields that display status information are not shaded.
- Edit fields have square corners and command buttons are rounded.
- To select a command button or edit a field, touch and release the command button or edit field with your fingertip.
- NOTE When you touch a button or edit field, the action is taken when you lift your finger. If you unintentionally touch a button or field, slide your finger away from the button or field before lifting, to cancel the action.
- Touching a command button (for example, <u>[Inject]</u>) executes the command immediately.

- When a command button is selected, it changes to white text on a dark backgound (for example, **hject**).
- Touching an edit field (for example, 0.00 mL/min) opens a page with a number keypad (see Figure 2-3). Use the keypad to enter the desired numerical value for the field and then touch the ENTER button.

Flow Rate

• Touching the page name (for example, HOME) in the bottom right corner, opens a menu of pages (see Figure 2-4).

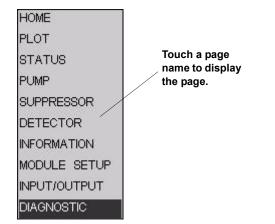


Figure 2-4. ICS-1500 Touch Screen Menu of Pages

• Touching a page name on the menu of pages displays the selected page. For example, touching **SUPPRESSOR** displays the **SUPPRESSOR** page (see Figure 2-5). See Appendix C for details about each touch screen page.

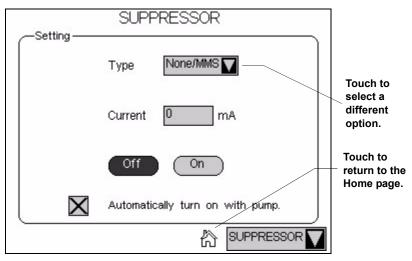


Figure 2-5. Suppressor Page

• Touching 🕅 returns you to the **HOME** page.

• Touching opens a list of options from which to choose (see Figure 2-6).

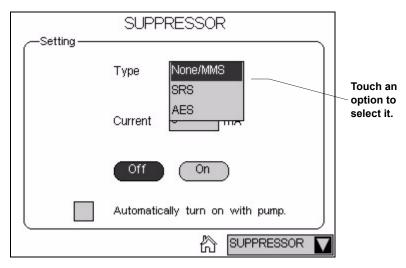


Figure 2-6. Suppressor Page: Selecting an Option

2.1.2 Top Cover

Figure 2-7 illustrates the top cover of the ICS-1500.

Figure 2-7. ICS-1500 (Top View)

Reservoir Storage

The ICS-1500 top cover has room for up to three 2-L plastic reservoirs (P/N 044129).

Tubing Chase

The tubing chase under the top cover routes tubing to the front of the ICS-1500.

2.1.3 Component Panel

Figure 2-8 shows the user-accessible components installed on the component panel behind the ICS-1500 front door.

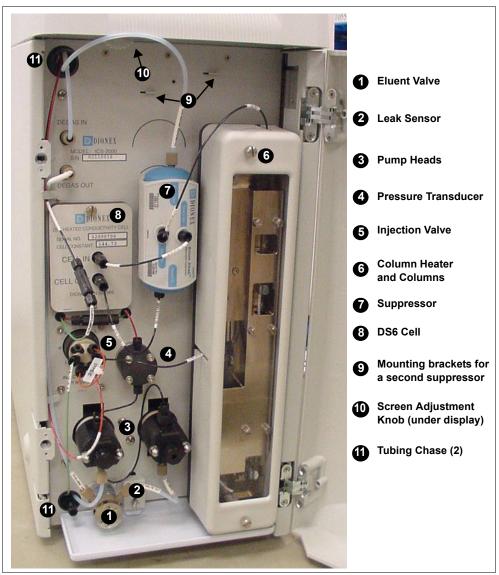


Figure 2-8. ICS-1500 Component Panel

Eluent Valve

The eluent valve controls the flow from the eluent reservoir. It opens automatically when the pump is running and closes when the pump is off.

Leak Sensor

The leak sensor is installed in the drip tray at the bottom of the component panel. If liquid accumulates in the tray, an error message is reported in Chromeleon on the LCD touch screen.

Pump Heads

The ICS-1500 includes a serial isocratic dual-head pump. The flow rate can be set to 0.00 and to between 0.05 and 5.0 mL/min. However, for optimum performance, set the flow rate to between 0.4 and 2.0 mL/min. Setting the flow rate to 0.00 turns off the pump. See <u>Section 2.4.3</u> for details about the pump.

Pressure Transducer

The pressure transducer measures the system backpressure.

Injection Valve

The injection valve is a six-port, electrically-activated valve. A $25-\mu$ L sample loop (P/N 042857) is installed on the valve at the factory. See <u>Section 2.4.4</u> for details about valve operation.

Separator and Guard Columns

Both the separator and guard columns are packed with resin and perform the separation of the sample ions. The main function of the guard column is to trap contaminants and remove particulates that might damage the separator column.

Column Heater

The column heater controls the temperature of the separator and guard columns. The temperature can be set to between 30 °C and 60 °C and it must be set at least 5 °C above the ambient temperature. See Section 2.4.5 for details about the column heater.

Suppressor

The suppressor reduces the eluent conductivity and enhances the conductivity of the sample ions, thereby increasing detection sensitivity. Either an AES® Atlas Electrolytic Suppressor, SRS® Self-Regenerating Suppressor, or MMSTM MicroMembraneTM Suppressor can be used with the ICS-1500. See Section 2.4.6 for details.

DS6 Heated Conductivity Cell

The flow-through conductivity cell measures the electrical conductance of analyte ions as they pass through the cell. A heat exchanger inside the cell regulates the temperature, which can be set to between 30 °C and 55 °C. For optimum performance, set the temperature to at least 7 °C above the ambient temperature. See Section 2.4.7 for details about the cell.

Screen Adjustment Knob

Use this knob to change the LCD touch screen contrast.

Tubing Chases

The upper tubing chase routes tubing from the top cover to the component panel. The lower tubing chase routes tubing from the component panel through the ICS-1500 interior to the rear panel.

2.1.4 Rear Panel

Figure 2-9 illustrates the ICS-1500 rear panel.

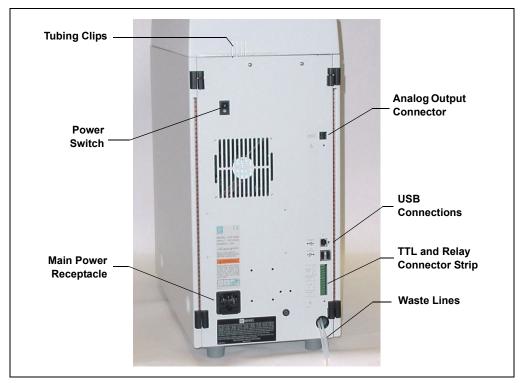


Figure 2-9. ICS-1500 Rear Panel

Analog Output Connector

The analog output connector outputs conductivity data (scaled to 1 volt) to an integrator or recording device. See <u>Section B.19</u> for connection and setup information.

USB Connections

A USB receptacle is provided to allow connection to the Chromeleon computer. Two USB ports are provided for connecting to other USB devices. See <u>Section B.5</u> for connection instructions.

TTL and Relay Connector

The TTL and Relay connector strip provides two TTL outputs, two relay outputs, and four TTL inputs. The outputs can be used to control functions in other TTL or relay controllable devices. The inputs can be used to switch the injection valve position, turn on the pump, perform an autozero command, and send an event mark to the analog output. See <u>Section D.1</u> for connection instructions.

Tubing Clips

The tubing clips hold tubing in place when routing it from the top cover.

Power Switch

The power switch provides on/off control of power to the ICS-1500.

Main Power Receptacle

The power supply cord plugs into the AC power receptacle.

The power supply cord is used as the main disconnect device. Make sure the socket-outlet is located near the ICS-1500 and is easily accessible.

VORSICHT

Le cordon d'alimentation principal est utilisé comme dispositif principal de débranchement. Veillez à ce que la prise de base soit située/installée près du module et facilement accessible.

Das Netzkabel ist das wichtigste Mittel zur Stromunterbrechung. Stellen Sie sicher, daß sich die Steckdose nahe am Gerät befindet und leicht zugänglich ist.

2.2 Flow Schematic

Figure 2-10 illustrates the liquid flow path through an ICS-1500 when using suppression in autorecycle mode.

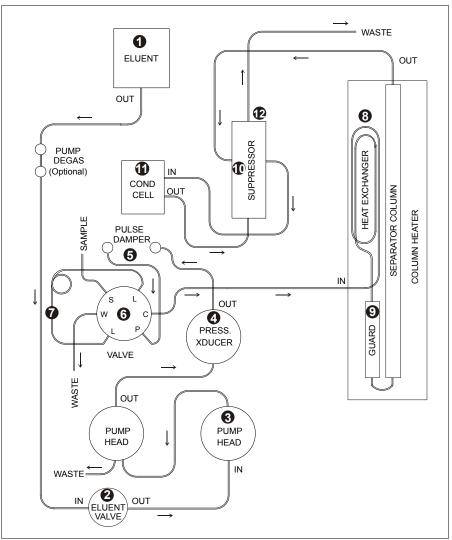


Figure 2-10. ICS-1500 Flow Schematic

• Eluent from the eluent reservoir **1** flows first through the pump degas assembly (if it is installed) and then through the eluent valve **2** to the

pump Θ . It is then pushed through the pressure transducer Φ , which measures the system pressure.

- From there, it is pushed through a pulse damper S, which smooths minor pressure variations from the pump to minimize baseline noise. The eluent then flows into the injection valve. G
- After sample is loaded into the sample loop **2** and the injection valve is toggled to the Inject position, eluent passes through the sample loop.
- The eluent/sample mixture is pumped through the heat exchanger ③, which heats the mixture to the column heater temperature.
- The mixture then goes to the guard **9** and separator columns and through the suppressor.
- From the suppressor, the mixture flows through the cell **①**, where the analytes are detected. A digital signal is sent to Chromeleon software. Analog output can be collected simultaneously.
- Finally, the mixture flows out of the cell and is recycled back into the suppressor, where it is used as the water source for the regenerant chamber. Flow is then routed to waste.

2.3 The Chromeleon Interface

NOTE This section provides a brief overview of the Chromeleon interface. For details, refer to the Chromeleon Help or user's manual.

Chromeleon software is used for remote control of ICS-1500 operation. Two modes of software control are available: direct control and automated control.

- With direct control, you select operating parameters and commands from the Chromeleon menu bar, toolbars, and Control Panels. Direct control commands are executed as soon as they are entered. <u>Section 2.3.2</u> describes the commands available from the ICS-1500 Control Panels.
- With automated control, you create a list of samples (a sequence) to be processed automatically. The sequence includes programs with commands and parameters for controlling the ICS-1500, acquiring sample data, and producing reports. Section 3.11.2 describes automatic sample processing.

2.3.1 The Chromeleon Main Window and Browser

When you start Chromeleon, the main window and the Chromeleon Browser appear (see Figure 2-11).

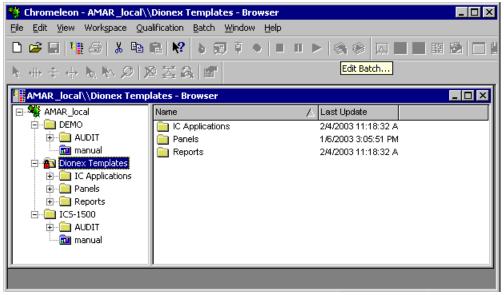


Figure 2-11. Chromeleon Main Window and Browser

NOTE The Chromeleon Browser looks and functions like Windows Explorer, but do not confuse the two. If you copy files from the Chromeleon Browser into Explorer, the files will be corrupted.

The Browser displays the directories in which chromatographic data is located, and allows you to open, move, and delete data.

- The left pane of the Browser shows the directory tree structure. By clicking the '+' signs next to the folders and expanding the directory tree, you can access sequences, System Control Panels, Wellness Panels, and reports.
- The right pane displays information about the item selected in the left pane.

2.3.2 The ICS-1500 Control Panels

Chromeleon provides two types of Control Panels for the ICS-1500.

- System Control Panels are used for controlling and monitoring ICS-1500 operation. System Control Panels are described below.
- The Wellness Panel is used for performing calibration and diagnostic functions. The Wellness Panel is described in <u>Section 5.1</u>.

System Control Panels

System Control Panels for the ICS-1500 are located in the **Dionex Templates/Panels/Dionex_IC\ICS-1500** folder. Chromeleon provides panels for each ICS-1500 system configuration. There are two styles of panels:

- Traditional system panels (see Figure 2-12) provide controls on a single window with minimal graphics.
- System panels (see <u>Figure 2-13</u>) provide a more graphical interface than the traditional style. On these panels, clicking a control often brings up another window in which you enter a value.

When you open a System Control Panel, select a panel that matches your system configuration and choose the style that you prefer.

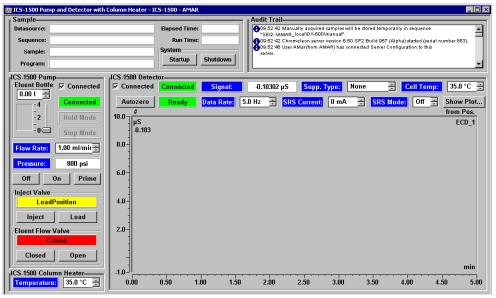


Figure 2-12. ICS-1500 System Control Panel (Traditional)

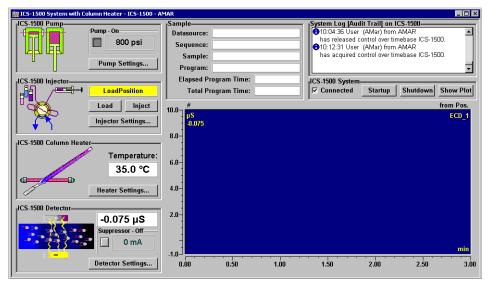


Figure 2-13. ICS-1500 System Control Panel (Graphical)

System Controls Overview

This section provides brief descriptions of the various controls available on the ICS-1500 System Control Panels.

NOTE The examples are from the traditional style of panel.

Sample

Sample			
Datasource:	Elapsed Time:		
Sequence:	Run Time:		
Sample:	System		
Program:	Startup	Shutdown	

Datasource

Displays the database in which the chromatographic data for the sample is saved.

Sequence

Displays the sequence in which this sample is included.

Sample

Displays the name of the sample that is running.

Program

Displays the name of the program that is running.

Elapsed Time

Displays the time that has elapsed since the sample analysis began.

Run Time

Displays the total run time.

System

Startup

Starts the pump and suppressor. The flow rate and suppressor current settings that were in effect at system shutdown (see below) are restored.

Shutdown

Stops the pump and suppressor. The flow rate and suppressor current settings currently in effect are remembered and will be restored at system startup (see above).

Audit Trail

r Audit Trail————————————————————————	
07:54:19 0.000 Pump_ECD.Autozero	
07:54:19 0.000 ECD_1.AcgOn	
07:54:19 0.000 Pump_InjectValve.InjectPosition_Duration = 30.00	
107:54:49 0.500 {Pump_ECD} Log Pressure: 500.00	
107:54:49 0.500 {Pump_ECD} Log Background: -0.24	
▶:: 15.000 ECD_1.AcqOff	
	•

The Audit Trail displays an account of every event that occurs during ICS-1500 operation. This includes errors, status messages, operational events, etc.

Pump

ICS-1500 Pump Eluent Bottle	Connected
	Connected
-4	
-2	Hold Mode
-0	Stop Mode
Flow Rate:	1.00 ml/mii 🗧
Pressure:	800 psi
Off	Dn Prime

Eluent Bottle

The entry field and gauge indicate the level of liquid (in liters) in the eluent bottle. This is a user controlled feature. The level must be entered by the user when the reservoir is filled. See Section 3.4.4 for details.

Connected

Connects the ICS-1500 to the Chromeleon Control Panel, enabling communication between the PC and the module. Clearing the check box disconnects the ICS-1500 from the PC.

Hold Mode

Indicates when an automatic (batch) run is on hold; pump flow is not stopped.

Stop Mode

Indicates when an automatic (batch) run is stopped; pump flow is also stopped.

Flow Rate

Sets the pump flow rate in mL/min.

Pressure

The sliders select the upper and lower pressure limits. The **Pressure** field displays the current pressure.

On, Off, Prime

Turn the pump on and off or start the pump priming function.

Inject Valve					
LoadPosition					
Inject Load					

Eluent Flow Valve			
Open			
Closed	Open		

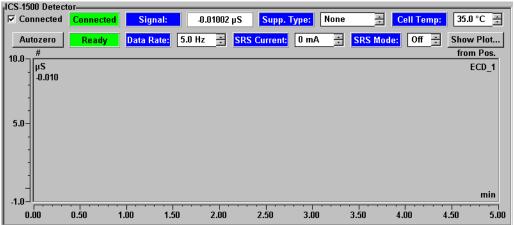
Column Heater

rICS-1500 Column Heater				
Temperature:	35.0 °C 🗧			

Set Temp

Inject Valve

position.


Eluent Flow Valve

select the position.

Sets the temperature of the column heater.

Displays the current position of the inject valve. The **Inject** and **Load** buttons select the

Displays the current position of the eluent flow valve. The **Closed** and **Open** buttons

Detector

Connected

Connects the ICS-1500 to the Chromeleon Control Panel, enabling communication between the PC and the module. Clearing the **Connected** check box disconnects the ICS-1500 from the PC.

Autozero

Sets the conductivity to zero.

Ready

Indicates if the detector is ready to begin data acquisition.

Signal Displays the offset conductivity.

Data Rate Sets the rate at which data points are recorded.

Supp. Type Selects the type of suppressor installed.

SRS Current Sets the current supplied to the suppressor.

Cell Temp Sets the temperature of the cell.

SRS Mode Selects whether the suppressor is on or off.

Show Plot Displays the ICS-1500 detector signal plot in a separate window.

2.4 System Component Details

This section provides details about ICS-1500 system components, including the vacuum degas assembly (optional), pump, injection valve, column heater, suppressor, and conductivity cell.

2.4.1 Vacuum Degas Assembly (Optional)

The vacuum degas assembly provides online eluent degassing at the time and duration specified by the user. The assembly, which must be installed in the ICS-1500 at the factory, consists of:

- A single-channel degas chamber (with degas membranes) with internal capacity of 17 mL
- A dual-stage diaphragm vacuum pump
- A solenoid valve
- An on-board vacuum sensor
- The electronics required to operate the vacuum pump
- Tubing, fittings, and other accessories

By default, the ICS-1500 monitors the degas pressure reading and turns the degas pump on and off as needed. A different degas operating mode can be selected from the touch screen **PUMP** page (see Section C.7) or from Chromeleon. To select degas operating options from Chromeleon, open the Server Configuration program, select the ICS-1500 device icon

under the timebase, and select **Properties** from the **Edit** menu. Select the **Options** tab (see Figure 2-14).

Dionex ICS-1500 System	×
Error Levels Demo Chromatogram TTL Inputs Trend Calibration Diagnostic: General Options Signals Head Type & Limits Solvents State Devices	- 3
└ Installed Options └ Degas └ Column Heater	
Degas Mode C Always Off C Always On C Cycle On: 0 (0120 sec) Off: 0 (05940 sec) C Monitor	
OK Cancel Apply Help	

Figure 2-14. Server Configuration Properties: Degas Mode Options

Degas Mode Options

- Always Off: The degas pump is always off.
- Always On: The degas pump is always on. This setting is for test purposes by a Dionex Service Representative. Do not use this setting for routine operation.
- **Cycle**: The degas pump cycles on and off according to the times specified in the **Cycle On** and **Off** fields. **Cycle On** specifies for how long the degas pump runs during a cycle. **Cycle Off** specifies the time between cycles.
- **Monitor**: (default mode) The ICS-1500 monitors the degas pressure reading and turns the degas pump on and off as required.

2.4.2 Eluent Valve

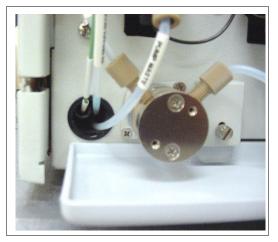


Figure 2-15. Eluent Valve

The eluent valve controls the flow from the eluent reservoir. It opens automatically when the pump is running and closes when the pump is off. The valve can also be opened and closed manually from the Chromeleon Control Panel (see Section 2.3.2), or from the ICS-1500 touch screen **PUMP** page (see Section C.7). This lets you perform service procedures on pump components without eluent leaks occurring.

2.4.3 Pump

The ICS-1500 pump is a microprocessor-based isocratic eluent delivery system. Its variable speed, dual-piston series design ensures pulse-free pumping for the most demanding applications.

Primary Pump Head

The primary pump head pumps mobile phase into the secondary head (see <u>Figure 2-16</u>). The check valves, which prevent reverse flow through the pump, are located on the bottom (inlet) and top (outlet) of the primary pump head. The priming valve is on the front of the pump head.

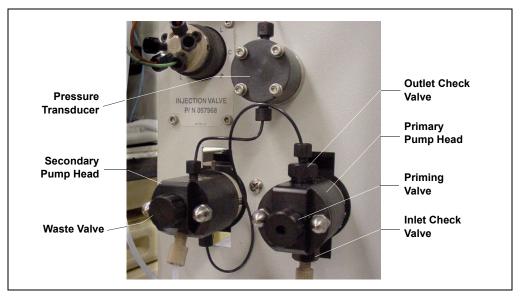


Figure 2-16. ICS-1500 Pump Components

To open the priming valve, turn the knob one-quarter to one-half turn counterclockwise. When the priming valve is open, liquid can flow into and out of the primary pump head via the port in the front of the valve.

NOTE The priming valve must be open when the pump is being primed with a syringe or with isopropyl alcohol. For detailed priming instructions, see <u>Section B.12</u>.

Secondary Pump Head

The secondary pump head delivers eluent to the remainder of the chromatography system (injection valve, column, and detector). The waste valve is located on the front of the secondary pump head (see Figure 2-16).

To open the waste valve, turn the knob one-quarter to one-half turn counterclockwise. When the waste valve is in the open position, all output is directed to waste.

NOTE The waste valve must be open when the pump is being primed using the **Prime** button. For detailed priming instructions, see <u>Section B.12</u>.

Pressure Transducer

Flow exiting the secondary pump head is directed to the pressure transducer (see Figure 2-16), which measures the system pressure.

Pressure readings, which can be monitored from the Chromeleon Control Panel or the touch screen **HOME** page, indicate that the pumping system is delivering smooth, accurate flow.

The system pressure should remain consistent (no more than a 3% difference from one pressure reading to the next). High and low pressure limits can be used to stop the pump flow if a limit is exceeded. See <u>Section 4.1</u> for troubleshooting information if a pressure limit is exceeded.

Pulse Damper

Flow output from the pressure transducer continues to the pulse damper, which smooths minor pressure variations. From there, flow is directed to the injection valve and then to the remainder of the chromatography system.

Piston Seal Wash

The pump includes a piston seal wash assembly that can be set up to continuously rinse the back of the piston seals to remove salt crystals and prolong the life of the seals. To use this feature, an external water source must be connected. See <u>Section B.21</u> for connection instructions.

For continued protection of the pump, replace the piston rinse seals (see <u>Section 5.6</u>) and O-rings in the seal wash assembly every 6 months, or whenever you replace the main piston seals for the ICS-1500 pump.

2.4.4 Injection Valve

The injection valve (P/N 057968) is a six-port, electrically-activated valve. A 25- μ L sample loop (P/N 042857) is installed on the valve at the factory.

The valve has two operating positions: Load and Inject (see Figure 2-17).

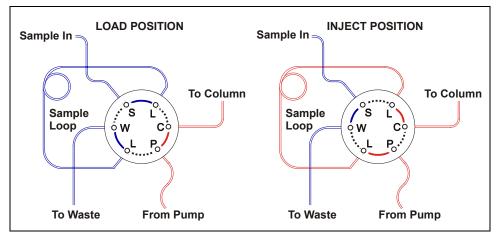


Figure 2-17. Injection Valve Flow Schematics

Eluent flows through either the Load or Inject path, depending on the valve position.

- In the Load position, sample is loaded into the sample loop, where it is held until injection. Eluent flows from the pump, through the valve, and to the column, bypassing the sample loop. Sample flows from the syringe or automated sampler line (if installed), through the valve, and into the sample loop. Excess sample flows out to waste.
- In the Inject position, sample is swept to the column for analysis. Eluent flows from the pump, through the sample loop, and on to the column, carrying the contents of the sample loop with it. <u>Section 3.10</u> describes how to inject samples.

<u>Figure 2-18</u> shows the injection valve connections. The injection valve is plumbed at the factory with all tubing and fittings for connection to the pump, injection port, column, and waste. A 25- μ L PEEK sample loop (P/N 042857) is installed between ports L (1) and L (4). Dionex offers

sample loops in various sizes. If necessary, the pre-installed $25-\mu L$ loop can be replaced with a loop that has a different sample injection volume.

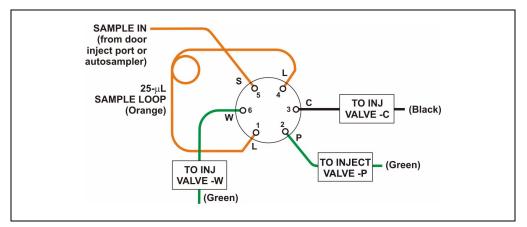


Figure 2-18. Injection Valve Plumbing

2.4.5 Column Heater

Figure 2-19. Column Heater

The column heater provides temperature control for the separator and guard column.

The heater temperature can be set to between 30 °C and 60 °C and it must be set at least 5 °C above the ambient temperature. Temperature is monitored via a thermistor mounted in the heater block. Setting the temperature to 0 °C turns off the column heater.

If the temperature exceeds 65 °C, the column heater is shut off and the error message "Column heater exceeds safe temperature." is displayed on the screen and in Chromeleon. See <u>Section 4.1</u> for troubleshooting information.

2.4.6 Suppressor

The suppressor reduces the eluent conductivity and enhances the conductivity of the sample ions, thereby increasing detection sensitivity. Either an Atlas Electrolytic Suppressor, Self-Regenerating Suppressor, or MicroMembrane Suppressor can be used with the ICS-1500.

For details about any of the suppressors or for information about selecting a suppressor for your application, refer to the suppressor manuals. The manuals are on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

2.4.7 DS6 Heated Conductivity Cell

The ICS-1500 flow-through conductivity cell measures the electrical conductance of analyte ions as they pass through the cell. Two passivated 316 stainless steel electrodes are permanently sealed into the PEEK cell body. The cell design provides efficient sweep-out, low volume (1 μ L), and low dispersion. Temperature control and compensation help ensure good peak reproducibility and baseline stability.

Temperature Control

Temperature directly affects the conductivity of a solution. For example, laboratory heating and air conditioning systems can cause a regular slow cycling in the baseline. This, in turn, can affect the reproducibility of an analysis. The higher the conductivity, the more pronounced the effect.

In ion analysis, the effect of temperature variation is minimized by suppressing eluent conductivity. To further reduce the effect of temperature variation, the ICS-1500 provides temperature control to the cell. A heater inside the cell regulates the temperature. The cell heater can be set to between 30 °C and 55 °C. The set temperature must be at least 7 °C above the ambient temperature. Setting the cell temperature to 0 °C turns off the cell heater.

Temperature Compensation

Built-in preset temperature compensation of 1.7% per °C helps minimize changes in the baseline or in peak heights if the operating temperature is different from the temperature at which the cell was calibrated.

DS6 Heated Conductivity Cell Components

The cell front cover provides **CELL IN** and **CELL OUT** fittings for connecting the cell to the suppressor (see Figure 2-8). The remaining cell components are mounted behind the component panel. To replace, the cell remove the screws on the cell front cover and pull the entire cell assembly out through the component panel. See Section 5.9 for cell replacement instructions.

This chapter describes routine operating and maintenance procedures for the ICS-1500 Ion Chromatography System.

3.1 Operation Overview

Figure 3-1 illustrates the basic steps for routine operation of the ICS-1500.

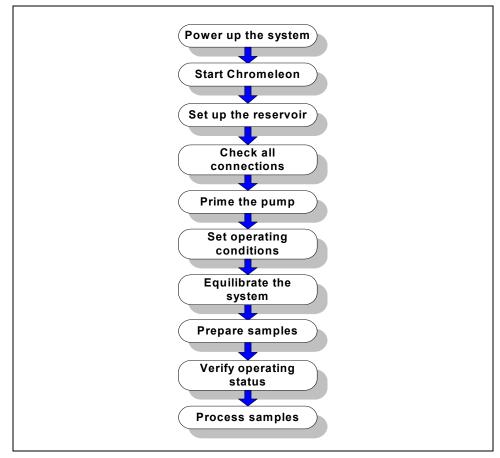


Figure 3-1. ICS-1500 Operation Flow Chart

Sample Processing Overview

Samples can be run either manually (one at a time), or they can be grouped and run automatically in batches. Figure 3-2 shows the typical steps for manual and batch sample processing. Samples can be loaded into the sample loop with an autosampler or with a syringe through the injection port on the ICS-1500 front door.

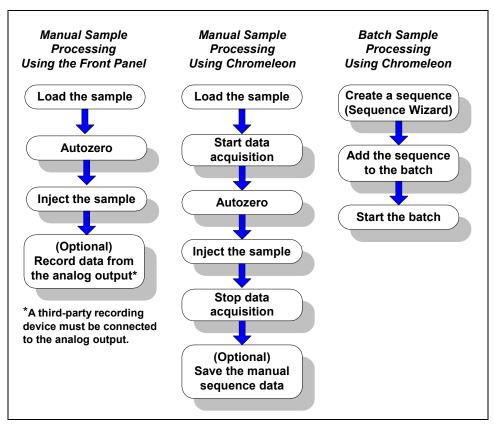
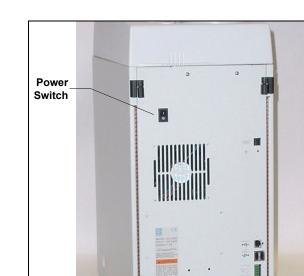



Figure 3-2. Sample Processing Overview

3.2 Power Up the System

Press the power switch on the ICS-1500 rear panel (see <u>Figure 3-3</u>) to turn on the system power. <u>Table 3-1</u> shows the ICS-1500 conditions at power up.

Also turn on the power to the computer and the autosampler (if used).

Figure 3-3. ICS-1500 Rear Panel

Feature	Power-Up Condition	
Pump	Off	
Injection valve	Load position	
Cell	Reading current value	
Suppressor	Off*	
Cell heater	Set to the last value used. The default when the ICS-1500 is turned on for the first time is 35 °C.	
Column oven temperature	Set to the last value used. The default when the ICS-1500 is turned on for the first time is 30 °C.	
Table 3-1	ICS-1500 Power-Up Conditions	

Table 3-1. ICS-1500 Power-Up Conditions

* When you start the suppressor, the value used last is restored.

3.3 Start Chromeleon

- NOTE See <u>Section B.8</u> for how to set up Chromeleon, if you are beginning operation of an ICS-1500 that has not been configured in a timebase.
- If the Chromeleon Server is not running (the icon on the taskbar is crossed out in red in red in red in the Server by right-clicking the icon and selecting Start Server. When the server starts, the icon changes to gray is
- Start Chromeleon by selecting Start>Programs>Chromeleon> Chromeleon. The Chromeleon main window and the Browser will open. Your screen display should resemble <u>Figure 3-4</u>. If the Browser does not open, select Browser from the File menu to open it.

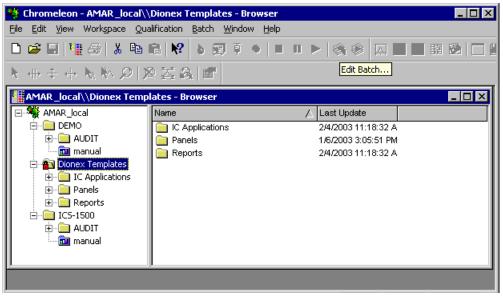


Figure 3-4. Chromeleon Main Window and Browser

- 3. In the Browser, expand the **Dionex Templates\Panels\Dionex_IC\ICS-1500 System Panels** folder. Several ICS-1500 System Control Panels (.PAN files) are provided, corresponding to various system configurations. There are two styles of panels:
 - Traditional panels provide controls on a single window with minimal graphics.
 - System panels provide a more graphical interface than the traditional style and include more controls. You can choose either style of panel, depending on your personal preference.
- Open a panel for your system configuration by double-clicking its name in the list. For example, if your system includes an ICS-1500 and an AS50 autosampler, double-click either ICS-1500_Traditional_System_AS50.pan or ICS-1500_System_AS50.pan.
- The Control Panel opens, unconnected (see <u>Figure 3-5</u>). To connect to the timebase, open the **Control** menu and click the name of the ICS-1500 timebase from the list at the bottom of the menu.

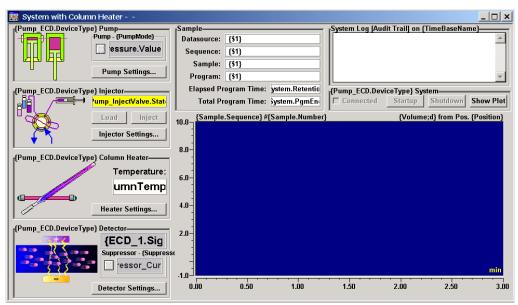


Figure 3-5. ICS-1500 System Control Panel (Unconnected)

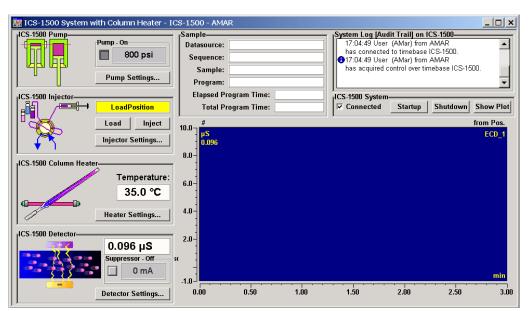


Figure 3-6 shows a connected Control Panel for an ICS-1500 system.

Figure 3-6. ICS-1500 System Control Panel (Connected)

NOTE The ICS-1500 Ion Chromatography System is designed for use for IC (ion chromatography) and BioLC applications and should not be used for any other purpose. If there is a question regarding appropriate usage, contact Dionex.

3.4 Set Up the Eluent Reservoir

3.4.1 Prepare the Eluent

Prepare the eluent according to the instructions in the column manual. Column manuals are included on the Dionex Reference Library CD-ROM (P/N 053891).

3.4.2 Degas the Eluent

Eluent quality significantly affects the performance of the ICS-1500. To ensure optimal pump performance, observe the following precautions:

- Dionex strongly recommends vacuum degassing all eluents. This helps prevent bubbles, caused by outgassing, from forming in the pump heads and the detector flow cell.
- The optional vacuum degas assembly provides programmable, online degassing. The degas assembly must be installed in the ICS-1500 at the factory. If the ICS-1500 does not contain a degas assembly, manually degas eluents daily (following the instructions below) and store it in pressurized reservoirs.

Manual Degassing of Eluent

- 1. Prepare the eluent required for the application and pour it into a vacuum flask
- 1. Pour the deionized water into a vacuum flask
- 2. Attach the flask to a vacuum pump or water aspirator.
- 3. Vacuum degas the eluent deionized water for 5 to 10 minutes by shaking or sonication.
- 4. Remove the flask from the vacuum. **Do not allow water to flow from the aspirator back into the flask.**
- 5. Pour the degassed eluent deionized water into a pressurizable reservoir. **Do not shake the eluent.**
- 6. Install an end-line filter on the eluent deionized water line (see <u>Section 3.4.3</u>).
- 7. Pressurize the reservoir (see <u>Section B.20</u>).

3.4.3 Filter the Eluent

Filtering removes small particulates in the eluent that may contaminate the pump check valves and cause erratic flow rates or loss of prime. An end-line filter (P/N 045987) is provided in the ICS-1500 Ship Kit (P/N 057905) for this purpose.

Install the end-line filter on the end of the eluent line, inside the reservoir. Verify that the end of the filter extends to the bottom of the reservoir and that the filter is submerged in eluent. This prevents air from being drawn through the lines. Refer to the *Pressurizable Reservoir Installation Instructions* for details.

3.4.4 Fill the Reservoir

Fill the reservoir with the prepared eluent.

3.4.5 Set the Eluent Level

After filling the reservoir, open the **HOME** page and enter the volume of liquid in the reservoir in the **Eluent Level** field (see <u>Figure 3-7</u>), or enter the volume in the **Eluent Bottle** field on the Chromeleon Control Panel (see <u>Figure 3-8</u>). The ICS-1500 determines the eluent usage, by monitoring the flow rate and the length of time the pump is on, and updates the field as the eluent is used up. A warning is displayed if the level falls below 200 mL. It is repeated at 100 mL and then at 0 mL.

IMPORTANT

In order for the eluent level displayed on the screen to be accurate, the level must be entered by the user when the reservoir is filled. The ICS-1500 does not automatically detect when the reservoir is filled, nor when it is empty.

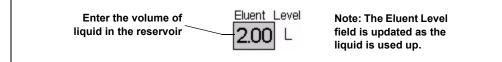


Figure 3-7. Home Page: Setting the Eluent Level

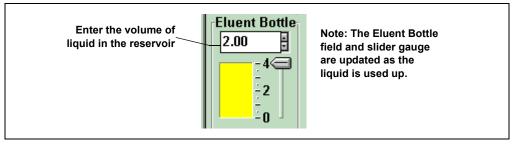
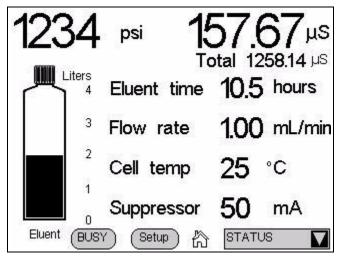



Figure 3-8. Chromeleon Control Panel: Setting the Eluent Level

The amount of liquid remaining in the reservoir is also displayed on the **STATUS** page (see <u>Figure 3-9</u>). The **STATUS** page also displays an estimate

of how many hours remain before the eluent reservoir is empty. See Section C.6 for details about the **STATUS PAGE**.

Figure 3-9. Status Page

3.4.6 Connect the Reservoir

If it is not already connected, connect the **ELUENT BOTTLE OUT** line from the reservoir cap to the **ELUENT IN** line, which extends from the plumbing and cable chase on the top of the ICS-1500.

3.5 Check All Connections

- 1. Make sure the reservoir is filled and the tubing connecting the reservoir to the ICS-1500 tubing is securely connected.
- 2. Make sure the USB cable from the computer is connected to the USB receptacle on the ICS-1500 rear panel.

3.6 Prime the Pump

If you changed eluent or if the eluent lines are dry, prime the lines first with a syringe before priming the pump. See <u>Section B.14.1</u> for instructions.

- 1. Verify that the priming valve on the primary pump head (see Figure 3-10) is closed (turned all the way clockwise).
- 2. Open the waste valve on the secondary pump head by turning the knob onequarter to one-half turn counterclockwise. Opening the valve directs the eluent flow path to waste and eliminates backpressure.

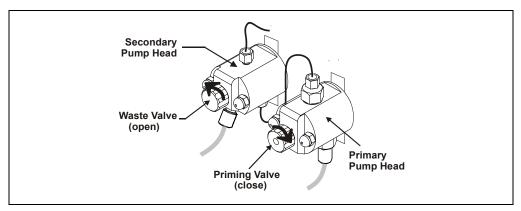


Figure 3-10. Priming the Pump

- Press Prime on the Chromeleon Control Panel or the ICS-1500 touch screen HOME page. A confirmation message is displayed, asking if you opened the waste valve. Select Yes. The pump will begin pumping at approximately 3.0 mL/min.
- 4. Continue priming the ICS-1500 until all air and previous eluent are purged and no air bubbles are exiting the waste line.

- 5. Press Pump Off.
- 6. Close the waste valve. **Do not overtighten.** The pump is now ready for operation.

3.7 Set System Operating Conditions

NOTE This section is an overview of the steps needed to start up the system and begin running samples. Actual operating parameters (flow rate, cell heater temperature, suppressor current, etc.) depend on the application to be run. Refer to the column manual for the required parameters for your application.

Set or verify system operating parameters from either the Chromeleon Control Panel or from the touch screen **HOME** page. Operating parameters can also be set automatically by loading a Chromeleon sequence.

NOTE Clicking the System Startup button on the Chromeleon Control Panel, starts the pump and suppressor. The flow rate and suppressor current settings that were in effect when the system was shut down are restored.

- 1. Verify that the pump is on and set to the correct flow rate.
- 2. Verify that the suppressor current is on and that the setting is correct.
- 3. Verify that the cell heater is set to the correct value.
- 4. Verify that the column heater is set to the correct value.

Automatically Turning on the Suppressor

You can set up the ICS-1500 to turn on the suppressor automatically when the pump is turned on. To do this:

• Select the Automatically turn on with pump option from the SUPPRESSOR page.

NOTE The suppressor is always turned off automatically when the pump is turned off.

3.8 Equilibrate the System and Verify Operational Status

NOTE You can monitor system functions (conductivity, pressure, cell temperature, etc. from the Chromeleon Control Panel or from the touch screen HOME page.

- 1. Allow the system to equilibrate. During equilibration, the Chromeleon Control Panel displays the background conductivity (the conductivity of the eluent before sample injection) and the system backpressure.
- 2. Monitor the background conductivity. Refer to the column manual for the appropriate background conductivity for your application.
- 3. Offset the background and zero the reading by clicking the **Autozero** button on the Chromeleon Control Panel (see Figure 3-4).
- 4. Monitor the system pressure from the Control Panel to make sure it is at the expected pressure for the installed column (refer to the column manual for details) and it stable.
 - If the pressure is less than the expected amount, gas may be trapped in the system. Release the gas by removing the pump fitting on the injection valve port, labeled **P** (2). Allow the air to escape and then reconnect the fitting.
 - If the pressure fluctuates by more than about 0.13 MPa (20 psi), prime the pump. See <u>Section 4.3</u> for additional troubleshooting information.
 - If the pressure is too high, there may be a restriction in the system plumbing. See <u>Section 4.7</u> for troubleshooting information.
- 5. Verify that the baseline conductivity is at the expected reading for your application and is stable. In general, it should be $<30 \ \mu\text{S}$ for a system set up for anion analyses and $<2 \ \mu\text{S}$ for a system set up for cation analyses. See <u>Section 4.12</u> for troubleshooting information if the conductivity is too high. See <u>Section 4.13</u> if the baseline is drifting or has excessive "noise" (large fluctuations in readings).
- 6. Verify that the cell heater is at the set point and is stable. The temperature is at equilibrium when the **Set Temperature** and the **Current Temperature** readings on the Control Panel are the same, or when the "=" symbol is displayed next to the **Column Heater** temperature on the **HOME** page.

Verify that the column heater temperature is at the set point and stable. The temperature is at equilibrium when the Set Temperature and the Current Temperature readings on the Control Panel are the same, or when the "=" symbol is displayed next to the Column Heater temperature on the HOME page.

The system is now ready for sample processing.

3.9 Prepare Samples

NOTE Sample preparation can be performed while the system is equilibrating.

3.9.1 Collecting and Storing Samples

Collect samples in high density polyethylene containers that have been thoroughly cleaned with deionized (DI) water. Do not clean containers with strong acids or detergents because these can leave traces of ions on the container walls. The ions may interfere with the analysis.

If samples will not be analyzed on the day they are collected, filter them through clean 0.45 μ m filters immediately after collection; otherwise, bacteria in the samples may cause the ionic concentrations to change over time. Refrigerating the samples at 4° C (39° F) will reduce, but not eliminate, bacterial growth.

Analyze samples containing nitrite or sulfite as soon as possible. Nitrite oxidizes to nitrate, and sulfite to sulfate, thus increasing the measured concentrations of these ions in the sample. In general, samples that do not contain nitrite or sulfite can be refrigerated for at least one week with no significant changes in anion concentrations.

3.9.2 Pretreating Samples

Analyze rainwater, drinking water, and air particulate leach solutions directly with no sample preparation (other than filtering and possibly diluting).

Filter groundwater and wastewater samples through 0.45 μ m filters before injection, unless samples were filtered after collection.

Before injection, pretreat samples that may contain high concentrations of interfering substances by putting them through Dionex OnGuard®

cartridges. Refer to the *Installation and Troubleshooting Guide for OnGuard Cartridges* (Document No. 032943) for instructions.

3.9.3 Diluting Samples

Because the concentrations of ionic species in different samples can vary widely from sample to sample, no single dilution factor can be recommended for all samples of one type. In some cases (for example, many water samples), concentrations are so low that dilution is not necessary.

Use eluent or ASTM filtered, Type I (18-megohm) deionized water or eluent to dilute the sample. When using carbonate eluents, diluting with eluent minimizes the effect of the water dip at the beginning of the chromatogram. If you dilute the sample with eluent, also use eluent from the same lot to prepare the calibration standards. This is most important for fluoride and chloride, which elute near the water dip.

To improve the accuracy of early eluting peak determinations, such as fluoride, at concentrations below 50 ppb, dilute standards in eluent or spike the samples with concentrated eluent to minimize the water dip. For example, spike a 100 mL sample with 1.0 mL of a 100 X eluent concentrate.

3.10 Loading and Injecting Samples

Samples can be loaded into the sample loop through the injection port on the front door using a syringe or vacuum syringe, or they can be loaded using an autosampler.

For autosampler injections, the injection port tubing is disconnected from the ICS-1500 injection valve and replaced by the autosampler outlet tubing. Other setup requirements depend upon the model of autosampler.

Setup for an AS40 Autosampler

A relay or TTL connection is required for Chromeleon to control sample loading. See <u>Section B.18</u> for AS40 autosampler installation instructions.

Setup for an AS50 Autosampler

To use an AS50 autosampler with the ICS-1500, the AS50 must meet the following requirements:

- An injection valve cannot be installed in the AS50
- The AS50 must have Moduleware version 1.11 or later installed
- Control of the ICS-1500 injection valve must be enabled in the AS50

The following AS50 models are configured at the factory to meet the above requirements:

- AS50 without injection valve (P/N 061309)
- AS50 without injection valve; with sample preparation (P/N 061310)
- AS50 without injection valve; with sample preparation and sample tray cooling (P/N 061311)
- AS50 without injection valve; with sample tray cooling (P/N 061312)

See Section B.17 for AS50 autosampler installation instructions.

After the AS50 is configured for use with the ICS-1500, all AS50 modes of injection (full-loop, partial-loop, and partial-loop limited-sample) are supported. In addition, all AS50 injection valve commands (whether issued from the AS50 front panel or from Chromeleon) will control the ICS-1500 injection valve. For Chromeleon control, the AS50 must be added to the ICS-1500 timebase (see Section B.8). For front panel control, the AS50 and ICS-1500 can be set up for

stand-alone operation. This requires a TTL cable connection between the AS50 and the ICS-1500. See <u>Section D.3</u> for stand-alone setup instructions.

3.10.1 Loading Samples with a Syringe

Make sure the injection port on the ICS-1500 front door (see <u>Figure 2-1</u>) is connected to the sample port S (5) on the injection valve (see Figure 3-11).

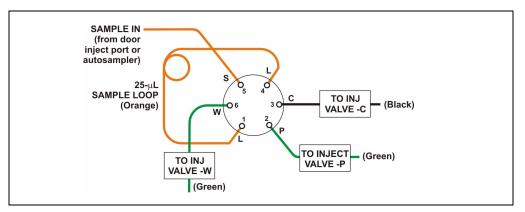


Figure 3-11. Injection Valve Connections

- 2. Fill the 1 cc syringe (P/N 016388) provided in the ICS-1500 Ship Kit (P/N 057905) with a calibration standard or sample.
- 3. Insert the syringe into the injection port on the ICS-1500 front door.
- 4. Verify that the injection valve is in the Load position.
- 5. Overfill the sample loop with several sample loop volumes. Excess sample will exit through the injection valve waste line.
- 6. Leave the syringe in the port.
- 7. Switch the injection valve to the Inject position (see Section 3.10.4).

3.10.2 Loading Samples with a Vacuum Syringe

- 1. Disconnect the waste line from port **W** (6) of the injection valve (see <u>Figure 3-11</u>) and attach a shorter line: 25 to 30 cm (10 to 12 inches) of PEEK or Teflon® tubing.
- 2. Place the free end of the line into the sample.
- 3. Verify that the injection valve is in the Load position.
- Insert the 1 cc syringe (P/N 016388) provided in the ICS-1500 Ship Kit (P/N 057905) into the injection port on the ICS-1500 front door (see Figure 2-1) and pull out the plunger to draw the sample into the injection valve.
- 5. Switch the injection valve to the Inject position (see Section 3.10.4).

3.10.3 Loading Samples with an Autosampler

- 1. Verify that the autosampler output line is connected to port **S** (5) of the ICS-1500 injection valve.
- 2. Prepare and fill the sample vials and place them in the autosampler tray or cassette. Refer to the autosampler manual for detailed instructions.
- 3. The sample loading process depends on the autosampler. Refer to the autosampler manual for detailed instructions. In general, use one of the following methods:
 - Include the commands for controlling sample loading in a Chromeleon program. See the examples in Section 3.10.5.
 - Enter the commands for loading the sample from the autosampler front panel.
- 4. Switch the injection valve to the Inject position (see Section 3.10.4).

NOTE If you are running the ICS-1500 without Chromeleon control, see <u>Section D.3</u> for standalone setup and operation instructions using an AS50 autosampler.

3.10.4 Injecting Samples

After loading the sample in the sample loop, switch the injection valve to the Inject position, using one of the following methods:

- Manually: Click the **Inject** button on the Chromeleon Control Panel (see Figure 3-6) or touch the **Inject** button on the **HOME** page.
- Automatically: Include the Inject command in a Chromeleon program. See the examples in <u>Section 3.10.5</u>.

3.10.5 Example Chromeleon Commands for Loading and Injecting Samples

The following examples show commands for loading and injecting samples using an AS50 or AS40 autosampler.

0.000	Pump_ECD.Autozero		;Zero the baseline.
	Load		;Switch the valve to Load.
	Wait	CycleTimeState	;Wait for cycle time (if any).
	Inject		;Switch the valve to Inject.
	Wait	InjectState	;Wait for injection to complete.
	ECD_1.AcqOn		;Start data acquisition.
14.000	ECD_1.AcqOff		;Stop data acquisition.

Example AS50 Program Commands

Example AS40 Program Commands

-2.300	Pump_ECD_Relay_1.Closed	Duration=138.00	;Note 1
0.000	Pump_ECD.Autozero		;Note 2
	ECD_1.AcqOn		;Note 3
	Pump_InjectValve.InjectPosition	Duration=30.00	;Note 4
30.00	ECD_1.AcqOff		;Note 5

AS40 Program Command Notes:

- 1. Close the ICS-1500 **RELAY OUT 1**, which is connected to the AS40 **LOAD** relay. This signals the AS40 to load the sample.
- 2. Zero the baseline.
- 3. Start data acquisition.
- 4. Switch the valve to Inject.
- 5. Stop data acquisition.

3.11 Process Samples

Samples can be run either manually (one at a time) or automatically (in groups or "batches").

3.11.1 Manual Sample Processing

To process samples manually, select operating parameters and commands from the touch screen pages, or from the Chromeleon menu bar, toolbars, and Control Panel. Commands are executed as soon as they are entered.

- NOTE When you run samples manually from the front panel (without using Chromeleon), the data is saved only temporarily in the ICS-1500 memory. For a permanent record of the data, connect a recording device (chart recorder, integrator, etc.) to the analog output. See <u>Section B.19</u> for analog output connection instructions.
- 1. Complete the steps in Sections <u>3.2</u> through <u>3.8</u> to prepare for operation and to start up the ICS-1500.
- 2. Load the sample using a syringe, vacuum syringe, or autosampler (see Section 3.10).
- 3. If you are using Chromeleon, select **Acquisition On** from the **Control** menu. Chromeleon records the signal supplied by the detector and displays the signal plot on the Control Panel.
- 4. Click the **Autozero** button on the Control Panel or the touch screen **HOME** page.

- 5. Inject the sample (see Section 3.10.4).
- 6. If you are using Chromeleon, monitor the chromatogram on the Control Panel and select **Acquisition Off** from the **Control** menu when sample data is collected.
 - NOTE Data from Chromeleon manual processing is saved in the MANUAL sequence folder under the local datasource. This data is overwritten each time a new manual sample is processed. To save the data from a manual run, select the MANUAL folder, select Save As from the File menu, and enter a new name for the sequence.
- 7. If you are controlling the ICS-1500 from the touch screens, select the **PLOT** button on the **HOME** page to view a plot of the conductivity data.

3.11.2 Automatic (Batch) Sample Processing

For batch processing, you use Chromeleon to create a list of samples (a sequence) to be processed automatically. For each sample, the sequence includes a program with commands and parameters for controlling the ICS-1500, controlling the autosampler (if used), and acquiring sample data. The sequence also includes a quantification method for peak identification and area determination. Additional sample processing parameters are included in the sequence (for example, the sample name, sample type, injection volume, etc.).

After defining the sequence, you can start batch processing.

- 1. Complete the steps in Sections <u>3.2</u> through <u>3.8</u> to prepare for operation and to start up the ICS-1500.
- 2. Create a new sequence or modify an existing one.

To create a new sequence:

- a. In the Browser, select File>New. Select Sequence (using Wizard) and click OK.
- b. Complete the steps in the Sequence Wizard, adding the desired number of samples and standards to the list. For help with any of the steps, click the **Help** button on the Sequence Wizard page.

- NOTE A simple way to get started is to select the "Use Application Template" option in Step 4 of the Sequence Wizard. This option lets you select a column and suppressor type from a list of applications. The Wizard then copies a program and quantification method, appropriate for the selected application, to the sequence folder and adds them to the sequence definition.
- 3. To start the sample processing, make sure the System Control Panel is open (see <u>Section 3.3</u>) and is the active window. Then, select **Edit** from the **Batch** menu. The Batch dialog box opens (see Figure 3-12).

Batch - ics-1500			×
Batch List Reporting	Error Handling Transfe	r]	
Name		Operator	Add Eemove Move Up Move Down
	<u>S</u> tart	Close Ready <u>C</u> h	eck Help

Figure 3-12. Batch Dialog Box

4. Click the **Add** button on the **Batch List** tab and add the sequence you created in <u>Step 2</u>. See <u>Figure 3-13</u> for an example.

Batch - ics-1500	×
Batch List Reporting Error Handlin	g Transfer
Name Test	Operator amarquardt <u>R</u> emove Move <u>Up</u> Move <u>D</u> own
<u>S</u> ta	t Close Ready <u>C</u> heck Help

Figure 3-13. Batch Dialog Box with an Example Sequence Added to the Batch List

5. To start the batch, click **Start**.

3.12 Maintenance

This section describes routine maintenance procedures that users may perform. All other maintenance procedures must be performed by Dionex personnel.

As Needed

- Regularly check the eluent reservoir to see if it needs to be refilled.
- Make fresh eluent as needed.

Daily

- Check the ICS-1500 component mounting panel (see Figure 2-8) for leaks or spills. Wipe up spills. Isolate and repair leaks (see Section 4.2). Rinse off any dried eluent with deionized water.
- Check the waste container daily and empty when needed.

Weekly

- Once a week, check fluid lines for crimping or discoloration. Relocate any pinched lines. Replace damaged lines.
- Check the junctions between the pump heads and the pump casting for evidence of liquid leaks. If piston seal wash tubing is not connected, check the drain tubes at the rear of the pump heads for evidence of moisture. Normal friction and wear may gradually result in small liquid leaks around the piston seal. If unchecked, these leaks can gradually contaminate the piston housing, causing the pump to operate poorly. If leaks occur, replace the piston seals (see Section 5.6).
- Check the end-line filter (P/N 045987) and change if needed. When new, endline filters are pure white. If the system is in continuous operation, change the end-line filter weekly, or whenever it becomes discolored. Replace the filter more often if bacterial buildup is visible or if the eluent does not contain solvent.
 - NOTE It is especially important to regularly replace end-line filters when using aqueous eluents, which may contaminate the filter with bacteria or algae. The bacterial buildup may not be visible.

Every Six Months

- Calibrate the cell (see <u>Section 5.1.3</u>).
- Calibrate the vacuum degas assembly (see <u>Section 5.1.5</u>).
- Replace the pump piston rinse seals and piston seals (see <u>Section 5.6</u>).

Yearly

- Rebuild the injection valve (see <u>Section 5.4</u>).
- Replace the AS40 Automated Sampler tip and tubing. The AS40/ASM Maintenance Kit (P/N 055647) contains all of the components required to replace the sampling tip and the tubing between the tip and the injection valve. Instructions are included with the kit.
- Perform the AS50 preventive maintenance procedure. The AS50 Maintenance Kit (P/N 060581) contains all of the required components and instructions for performing the procedure.

This chapter is a guide to troubleshooting problems that may occur while operating the ICS-1500 Ion Chromatography System.

- <u>Section 4.1</u> describes error messages and how to troubleshoot them. <u>Table 4-2</u> lists the messages and the page numbers where they are described.
- The remaining sections in this chapter describe other operating problems and how to resolve them. <u>Table 4-3</u> lists the operating problems and the page numbers where they are described

If you are unable to eliminate a problem, contact Dionex for help. In the U.S., call Dionex Technical Support at 1-800-346-6390. Outside the U.S., call the nearest Dionex office

Alarms and Error Conditions	See
COLUMN HEATER EXCEEDS SAFE TEMPERATURE	page 4-3
COLUMN HEATER OPEN CIRCUIT	page 4-3
COLUMN HEATER SHORT CIRCUIT	page 4-3
DEGAS CALIBRATION FAILED	page 4-4
HARDWARE NOT PRESENT	page 4-4
LEAK SENSOR WET	page 4-4
LOAD/INJECT VALVE ERROR	page 4-5
OPTION NOT INSTALLED	page 4-5
PRESSURE SLOPE CALIBRATION ERROR	page 4-5
PUMP MOTOR LOST CONTROL	page 4-6
PUMP PRESSURE HARDWARE ERROR	page 4-6
PUMP OVER PRESSURE	page 4-6
PUMP UNDER PRESSURE	page 4-7
SUPPRESSOR OVER CURRENT	page 4-7
SUPPRESSOR OVER VOLTAGE	<u>page 4-8</u>
SUPPRESSOR OVER POWER	page 4-8
SUPPRESSOR NOT CONNECTED	page 4-8

Table 4-2. ICS-1500 Alarms and Error Messages Summary

Alarms and Error Conditions	See
SUPPRESSOR STOPPED FOR FLOW RATE	page 4-9

Table 4-2. ICS-1500 Alarms and Error Messages Summary (Continued)

Other Operating Problems	See
Liquid Leaks	page 4-9
Pump Difficult to Prime or Loses Prime	page 4-11
Pump Does Not Start	page 4-13
No Flow	page 4-14
Erratic Flow/Pressure Reading	page 4-15
Excessive System Backpressure	page 4-15
Peak "Ghosting"	page 4-16
Nonreproducible Peak Height or Retention Time	page 4-17
Abnormal Retention Time or Selectivity	page 4-17
No Cell Response	page 4-18
High Cell Output	page 4-18
Baseline Noise or Drift	page 4-19
Vacuum Degas Assembly Does Not Run	page 4-20

Table 4-3. Operating Problems Summary

Alarms and Error Conditions 4.1

If any of the following alarm conditions occurs, a message is displayed in the Chromeleon Audit Trail and on the LCD touch screen.

• **COLUMN HEATER EXCEEDS SAFE TEMPERATURE**

This error occurs when the column heater temperature is higher than the maximum allowed. This error may occur if the ICS-1500 is operating in an extreme environment (greater than 40 °C).

To troubleshoot:

٠ Refer to Section A.3 for environmental specifications.

COLUMN HEATER OPEN CIRCUIT

This error message occurs when the column heater is unplugged from the component panel.

To troubleshoot:

- 1. Check that the column heater is correctly plugged into the component panel.
- 2. If the error persists, the column heater may be faulty. Replace the column heater (see Section 5.11).

COLUMN HEATER SHORT CIRCUIT

This error occurs when there is a short circuit on the thermistor input used to measure the column heater temperature. This error indicates a faulty column heater.

To troubleshoot:

Replace the column heater (see Section 5.11).

DEGAS CALIBRATION FAILED

This error occurs when the degas vacuum does not reach the expected level during calibration.

To troubleshoot:

- 1. Retry the calibration.
- 2. If calibration still fails, the vacuum degas assembly may need to be replaced. Contact Dionex for assistance.

HARDWARE NOT PRESENT

This error indicates an error in the ICS-1500 electronics.

To troubleshoot:

• Contact Dionex for assistance. The ICS-1500 electronics components cannot be serviced by the user.

LEAK SENSOR WET

The leak sensor is installed in the drip tray at the bottom of the component panel (see <u>Figure 2-8</u>). If liquid accumulates in the tray, the sensor signals the problem and the "Leak sensor wet" error message appears.

- 1. Locate the source of the leak by visually inspecting the tubing, fittings, and components on the component panel.
- 2. Tighten fittings or replace tubing and fittings as required. Refer to <u>Section 4.2</u> for detailed troubleshooting of various types of leaks.
- 3. After fixing the leak, dry the drip tray thoroughly to prevent the leak sensor from triggering additional error messages.

LOAD/INJECT VALVE ERROR

If the injection valve fails to switch position within 1 second of being toggled, the ICS-1500 Moduleware reports an error to Chromeleon and the "Load/Inject valve error" message appears.

To troubleshoot:

- 1. If a sequence is being executed, terminate the sequence by selecting Stop on the Chromeleon Batch menu.
- 2. Turn off the ICS-1500 power briefly and then restart.
- 3. Try to toggle the valve from Load to Inject by clicking the Load and Inject buttons on the ICS-1500 Control Panel in Chromeleon or on the touch screen **HOME** page.
- 4. If the problem persists, contact Dionex for assistance.

OPTION NOT INSTALLED

This error occurs if a command is issued to control an option that is not installed

To troubleshoot:

Check the Chromeleon Server Configuration program to verify that the ٠ option is enabled.

PRESSURE SLOPE CALIBRATION ERROR

This error occurs if you try to calibrate the pressure slope when the pressure is less than 3 MPa (500 psi).

To troubleshoot:

This is a service level error message. Contact Dionex for assistance.

PUMP MOTOR LOST CONTROL

This error indicates an error in the pump controller electronics.

To troubleshoot:

• Contact Dionex for assistance. The ICS-1500 electronics components cannot be serviced by the user.

PUMP PRESSURE HARDWARE ERROR

This error indicates an error in the pump controller electronics.

To troubleshoot:

• Contact Dionex for assistance. The ICS-1500 electronics components cannot be serviced by the user.

PUMP OVER PRESSURE

The ICS-1500 has a maximum system pressure limit of 34.5 MPa (5000 psi). The pressure limit can be lowered from Chromeleon (in the Server Configuration or in the control program) or from the touch screen **PUMP** page (see <u>Section C.7</u>). If the system pressure exceeds the set limit for at least 0.5 second, the pump stops and the "Pump over pressure" error message appears.

- 1. Check for blockages in the liquid lines by working your way backward from the cell to the pump. See <u>Figure 2-10</u> for the flow schematic).
- 2. Check that the flow rate is set to the correct value.
- 3. Check that the high pressure limit is set to the correct value.
- 4. Restart the pump.

PUMP UNDER PRESSURE

The ICS-1500 has a minimum pressure limit of 0. The low pressure limit can be raised from Chromeleon (in the Server Configuration or in the control program) or from the touch screen **PUMP** page (see Section C.7). If the system pressure falls below the low pressure limit, the pump stops and the "Pump under pressure" error message appears.

To troubleshoot:

- 1. Make sure the eluent reservoir is full.
- 2. Check for liquid leaks (see <u>Section 4.2</u>).
- 3. Check that the waste valve is closed.
- 4. Prime the pump (see <u>Section B.12</u>).
- 5. Restart the pump.

SUPPRESSOR OVER CURRENT

This error may be caused by an exhausted or dirty suppressor or by a malfunction in the suppressor controller electronics.

- 1. Follow the instructions in the suppressor manual to regenerate the suppressor. Suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).
- 2. Follow the instructions in the suppressor manual to clean the suppressor.
- 3. If a malfunction in the suppressor controller is suspected, contact Dionex for assistance. The ICS-1500 electronics components cannot be serviced by the user.

SUPPRESSOR OVER VOLTAGE

This error appears if you turn on the suppressor and the ICS-1500 cannot establish a connection with the suppressor.

To troubleshoot:

- 1. Check the suppressor cable connection (see Section 5.10).
- 2. If the error persists, replace the suppressor (see Section 5.10).

SUPPRESSOR OVER POWER

This error appears when, in order to maintain the selected current, the ICS-1500 is required to apply a higher voltage than the suppressor can support.

To troubleshoot:

- Reduce the flow rate.
- Rehydrate the suppressor. Refer to the suppressor manual for instructions. Suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).
- If the error persists, replace the suppressor (see Section 5.10).

SUPPRESSOR NOT CONNECTED

This error appears if you turn on the suppressor and the ICS-1500 cannot establish a connection with the suppressor.

- 1. Check the suppressor cable connection (see <u>Section 5.10</u>).
- 2. If the error persists, contact Dionex for assistance. There may be a problem in the suppressor controller electronics. The ICS-1500 electronics components cannot be serviced by the user.

SUPPRESSOR STOPPED FOR ZERO FLOW RATE

This error appears normally when you click the **Shutdown** button on the Chromeleon Control Panel. The message also appears anytime you turn off the pump flow while the suppressor is on. The suppressor is automatically turned off to prevent damage to the suppressor.

To troubleshoot:

• If the pump stopped unexpectedly, see <u>Section 4.5</u> for pump troubleshooting information.

4.2 Liquid Leaks

• Leaking fitting

Locate the source of the leak. Tighten or, if necessary, replace the liquid line connection (see <u>Section 5.3</u>). Refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432) for tightening requirements. The manual is on the Dionex Reference Library CD-ROM (P/N 053891).

• Broken liquid line

Replace the line and fittings with the same length and internal diameter tubing (see Section 5.3).

• Blocked or improperly installed line

Make sure the lines are not crimped or otherwise blocked. Also, if the blocked line is a waste line, make sure it is not elevated at any point after it exits the ICS-1500. If a line is blocked, replace it (see Section 5.3).

• Loose pump check valve

Make sure the check valves are firmly seated in the pump head. If they are not, tighten them carefully with an open end wrench just until the leak stops.

If the leak persists, replace the check valve (see Section 5.5).

• Leaking seal wash port

Leaking from the seal wash port indicates a leaking piston seal. Replace the seal (see Section 5.6).

• Damaged pump piston seal

- 1. Replace the piston seal (see <u>Section 5.6</u>).
- 2. If the leak persists, replace the piston (see <u>Section 5.7</u>).

• Pump head not tight against casting

Carefully tighten the pump head mounting nuts just until the leak stops. **DO NOT OVERTIGHTEN!**

• Leaking pressure transducer

Make sure the liquid line connections into the pressure transducer are tight. Refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432) for tightening requirements. The manual is on the Dionex Reference Library CD-ROM (P/N 053891). Replace any damaged fittings. The pressure transducer cannot be serviced by the user. Contact Dionex for assistance.

• Leaking pump head waste valve

Make sure the waste valve is closed. To close the valve, turn the knob clockwise, and tighten fingertight. **DO NOT OVERTIGHTEN! Overtightening may damage the valve and the pump head.**

If the leak persists, replace the waste valve O-ring (see Section 5.8).

• Leaking suppressor

Refer to the suppressor manual for troubleshooting procedures. Suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

• Leaking injection valve

Make sure the liquid line connections to the transducer are tight. Refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432) for tightening requirements. The manual is on the Dionex Reference Library CD-ROM (P/N 053891). Replace any damaged fittings.

Liquid leaks from behind the valve stator may indicate a scratched rotor seal. Rebuild the injection valve (see Section 5.4).

Leaking cell

Check the waste lines for blockage; trapped particles can plug the lines and cause a restriction and/or leak. If necessary, clear the waste lines by reversing the direction of flow.

Make sure the plumbing downstream from the cell is clear; a blockage may overpressurize the cell, causing it to leak. If the problem continues, contact Dionex for assistance.

4.3 Pump Difficult to Prime or Loses Prime

Excessive pressure fluctuations (more than 3% difference from one pressure reading to the next) indicate that the pump is out of prime.

• Empty eluent reservoir and/or no eluent connected

Fill the reservoir. Make sure all connections are secure.

• Eluent improperly or insufficiently degassed

If the ICS-1500 does not contain a vacuum degas assembly, degas the eluent manually (see Section 3.4.2).

If the ICS-1500 contains a vacuum degas assembly, check the degas settings:

- 1. Open the Chromeleon Server Configuration program, select the ICS-1500 device icon under the timebase and select **Properties** from the **Edit** menu (or double-click the ICS-1500 device icon).
- 2. Select the **Options** tab (see Figure 4-1).

Dionex ICS-1500 System	×
Error Levels Demo Chromatogram TTL Inputs Trend Calibrati	on Diagnostics
General Options Signals Head Type & Limits Solvents	State Devices
-Installed Options	
☑ <u>D</u> egas	
Column Heater	
Degas Mode	
C Always Off	
Always On	
O Cycle	
On: 0 (0120 sec)	
Off: 0 (05940 sec)	
• Monitor	
	1
OK Cancel Apply	Help

Figure 4-1. ICS-1500 Server Configuration Properties: Options

- 3. Verify that the **Degas** check box is enabled under **Installed Options**.
- 4. Check the **Degas Mode** settings. Select either the **Monitor** option or the **Cycle** option. If you select **Cycle**, set the time on to 30 seconds and the time off to 10 minutes. If **Cycle** is already selected, try increasing the time on or decreasing the time off.

NOTE Degas Mode options can also be selected from the touch screen PUMP page (see <u>Section C.7</u>).

• End-line filter is dirty or clogged

When new, end-line filters (P/N 045987) are pure white. If the system is in continuous operation, change the end-line filter weekly, or whenever it becomes discolored. Replace the filter more often if bacterial buildup is visible or if the eluent does not contain solvent. See the *Pressurizable Reservoir Installation Instructions* for more information about end-line filters.

NOTE It is especially important to regularly replace end-line filters when using aqueous eluents, which may contaminate the filter with bacteria or algae. The bacterial buildup may not be visible.

• Blockages in inlet tubing

Kinked or clogged tubing causes the pump to be "starved" for eluent. Replace the tubing and fittings (see Section 5.3).

• Dirty check valve

Clean or replace the pump check valve (see Section 5.5).

• Liquid leaks at junction between pump head and pump casting

Use the open-end wrench (P/N 014605) provided in the ICS-1500 Ship Kit (P/N 057905) to tighten the two acorn nuts that attach the pump head to the pump housing (see Figure 5-9). Tighten the nuts evenly (12 in-lb torque).

If the leak persists, replace the piston seal (see Section 5.6).

• Liquid leaks from the seal wash port

Replace the piston seal (see <u>Section 5.6</u>).

• Scratched pump piston

Check the pump pistons for scratches and replace if necessary (see Section 5.7).

4.4 Pump Does Not Start

• No power (front Power LED indicator is not lit)

Check that the power cord is plugged in.

Check the main power fuses and replace if needed (see Section 5.16).

• No communication between ICS-1500 and Chromeleon

Verify that the USB cable is connected correctly. See <u>Section B.5</u> for installation instructions.

• Pump is turned off

Turn on the pump from either the Chromeleon Control Panel or the ICS-1500 touch screen **HOME** page.

• Flow rate is set to 0

Set the flow rate from either the Chromeleon Control Panel or the ICS-1500 touch screen **HOME** page.

4.5 No Flow

• Pump waste or priming valve open (see Figure 4-2).

Close the valves by turning the knobs clockwise until fingertight. **DO NOT OVERTIGHTEN! Overtightening may damage the valve and the pump head.**

Figure 4-2. Waste and Priming Valves

• Flow rate is set to 0

Set the flow rate from either the Chromeleon Control Panel or from the touch screen **HOME** page.

• Eluent valve is closed

Open the eluent valve from either the Chromeleon Control Panel or from the touch screen **PUMP** page.

• Pump not primed

Prime the pump (see <u>Section B.12</u>).

• Broken pump piston

Replace the piston (see <u>Section 5.7</u>).

4.6 Erratic Flow/Pressure Reading

• Pump needs priming

Prime the pump (see <u>Section B.12</u>).

• Damaged piston seal

Replace the piston seal (see <u>Section 5.6</u>).

• Dirty pump check valve

Clean or replace the check valve (see Section 5.5).

• Leaking liquid lines or fittings

Check the liquid lines and fittings for small leaks. Tighten or, if necessary, replace the liquid line connection (see <u>Section 5.3</u>). Refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432) for tightening requirements. The manual is on the Dionex Reference Library CD-ROM (P/N 053891).

4.7 Excessive System Backpressure

• Restriction in the system plumbing

Check all liquid lines for crimping or blockage. Make sure the ferrule fittings are not overtightened onto tubing. Refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432) for details. The manual is on the Dionex Reference Library CD-ROM (P/N 053891). If you have trouble isolating the restriction, refer to <u>Section 5.2</u>.

• Plugged or damaged fitting

Isolate the faulty fitting by loosening fittings one by one until the pressure returns to normal. Repair or replace the fitting (see <u>Section 5.3</u>).

• Flow rate through the columns too high

Set the correct rate for your application. If an incorrect flow rate calibration is suspected, calibrate the flow (see Section 5.1.4).

• Clogged column bed supports

Refer to the instructions in the column manual for troubleshooting guidance. Column manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

• Contaminated columns

Clean the columns as instructed in the column manual.

• Plugged injection valve passages

Rebuild the injection valve (see Section 5.4).

4.8 Peak "Ghosting"

"Ghosting" is the appearance of extraneous peaks in a chromatogram. These may be late-eluting peaks from a previous injection, or they may be the result of a contaminated standard or eluent, or a malfunctioning injection valve. These peaks may co-elute with peaks of interest, resulting in nonreproducible peak heights/areas.

• Insufficient time between sample injections

Wait until the previous sample has been completely eluted before making another injection.

• Insufficient flush between samples

Flush the sample loop with at least 10 loop volumes of deionized water or sample between sample injections.

• Incorrect or contaminated standards

Remake standards.

• Incorrect or contaminated eluent

Remake the eluent according to the instructions in the column manual. Column manuals are included on the Dionex Reference Library CD-ROM (P/N 053891).

Install or replace the end-line filter on the end of the deionized water line (see Section 3.4.3).

• Malfunctioning injection valve

- 1. Rebuild the injection valve (see <u>Section 5.4</u>).
- 2. If the valve leak persists, contact Dionex for assistance.

4.9 Nonreproducible Peak Height or Retention Time

• Column overloading

Dilute the sample (see <u>Section 3.9</u>).

• Liquid leaks

Locate and eliminate the leaks (see <u>Section 4.2</u>).

• Incomplete or imprecise filling of the sample loop

- 1. Fill the sample loop until excess sample exits the waste line.
- 2. Inspect the 1-cc syringe (P/N 016388) and replace if damaged.

• Pump not primed properly

Prime the pump (see <u>Section B.12</u>).

4.10 Abnormal Retention Time or Selectivity

• Contaminated or incorrect eluent

Remake the eluent, using concentrated eluent and ASTM filtered, Type I (18-megohm) deionized water.

• Contaminated or degraded sample

Take appropriate precautions when preparing and storing samples to prevent contamination and degradation (see Section 3.9).

• Contaminated column

- 1. Clean the column as instructed in the column manual. Column manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).
- 2. If cleaning is unsuccessful, replace the column.

4.11 No Cell Response

• Cell not properly installed

Verify that the cell front cover is flush against the component panel. If necessary, tighten the two mounting screws. When the cell is correctly installed and the screws tightened, an electronics connector on the cell plugs into a receptacle inside the ICS-1500.

• No flow from pump

This condition has several possible causes. See Section 4.4 and Section 4.5 for details.

• Cell electronics malfunctioning

Use the Chromeleon Wellness Panel diagnostics to test the electronics (see Section 5.1 and the Chromeleon online Help for instructions). If the variance reading is outside the tolerance range (less than 1 μ S), the electronics are malfunctioning. Contact Dionex for assistance. The ICS-1500 electronics cannot be serviced by the user.

4.12 High Cell Output

• Background not suppressed by suppressor

Verify that the suppressor is turned on and the current is set to the correct value. Refer to the suppressor manual for additional troubleshooting guidance. Suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

• Sample concentration too high

Dilute the sample Section 3.9.3.

• Wrong eluent

Check that you are using the correct eluent for your application.

• Background conductivity not offset from conductivity reading

Before making an injection, allow the background conductivity to equilibrate, and then press **Autozero** on the Chromeleon Control Panel or the ICS-1500 touch screen **HOME** page.

• Cell out of calibration

Recalibrate the cell (see <u>Section 5.1.3</u>).

4.13 Baseline Noise or Drift

• Flow system leak; erratic baseline

Check all fittings and liquid lines for leaks. Tighten or, if necessary, replace all liquid line connections. Refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432) for tightening requirements. The manual is on the Dionex Reference Library CD-ROM (P/N 053891).

• Trapped gases

Release any trapped gases in the cell by loosening the lines to and from the cell and then retightening them. Also loosen and retighten the fittings to and from the suppressor eluent ports.

• Pump not properly primed

Prime the pump (see Section B.12).

• Contaminated or incorrect eluent

Remake the eluent, using concentrated eluent and ASTM filtered, Type I (18-megohm) deionized water.

• Rapid changes in ambient temperature

Make sure the ambient temperature is between 4 and 40 °C (40 and 104 °F).

Make sure air conditioning and heating vents are directed away from the ICS-1500 and the ICS-1500 front door is closed.

• Insufficient system equilibration following changes to operating parameters; especially apparent when operating at high sensitivities

Allow a longer system equilibration time (up to 2 hours) before starting operation.

• Incorrect suppressor operating conditions

Refer to the suppressor manual for troubleshooting information. Suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

• Cell above or below temperature

Contact Dionex for assistance.

• Damaged piston seal

Replace the piston seal (see Section 5.6).

4.14 Vacuum Degas Assembly Does Not Run

- Degas option not enabled in Chromeleon
 - a. Open the Chromeleon Server Configuration program. Select the ICS-1500 device icon under the timebase and select **Properties** from the **Edit** menu (or double-click the ICS-1500 device icon).

Select the **Options** tab (see Figure 4-3).

Dionex ICS-1500 System
Error Levels Demo Chromatogram TTL Inputs Trend Calibration Diagnostics General Options Signals Head Type & Limits Solvents State Devices
Installed Options Degas Column Heater
Degas Mode Always Off C Always On C Cycle On: 0 (0120 sec) Off: 0 (05940 sec) Monitor
OK Cancel Apply Help

Figure 4-3. ICS-1500 Server Configuration Properties: Options.

- b. Under Installed Options, verify that the Degas check box is selected.
- c. Under **Degas Mode**, verify that the **Always Off** option is *not* selected. If it is, select one of the following settings:
 - Cycle, and select On: 30 seconds and Off: 10 minutes
 - Monitor
- d. If the **Degas Mode** settings are correct, but the degas assembly still does not run, test the assembly by selecting the **Always On** option. The pump should turn on immediately. If it does not, the vacuum degas assembly may need to be replaced. Contact Dionex for assistance.

NOTE Degas Mode options can also be selected from the touch screen PUMP page (see Section C.7).

IMPORTANT

Select the Degas Mode, Always On option only when testing the vacuum degas assembly. Do not select the Always On option for routine use.

e. If the degas pump runs when you select **Always On**, but does not run when **Monitor** mode is selected, recalibrate the degas assembly (see <u>Section 5.1.5</u>).

This chapter describes ICS-1500 service and repair procedures that the user can perform. All procedures not included here, including electronics-related repair procedures, must be performed by Dionex personnel. For assistance, contact Dionex Technical Support. In the U.S., call 1-800-346-6390. Outside the U.S., call the nearest Dionex office.

Before replacing any part, refer to the troubleshooting information in <u>Chapter 4</u> to isolate the cause of the problem.

IMPORTANT

Substituting non-Dionex parts may impair ICS-1500 performance, thereby voiding the product warranty. Refer to the warranty statement in the Dionex Terms and Conditions for more information.

5.1 Diagnostic and Calibration Procedures

Diagnostic and calibration procedures can be performed either from the touch screen or from the Chromeleon Wellness Panel (see Figure 5-1).

For an overview of the Wellness Panel features, see <u>Section 5.1.1</u>. For instructions on performing calibration and diagnostic procedures, see the following sections:

- Calibrating the Conductivity Cell (Section 5.1.3)
- Calibrating the Flow Rate (Section 5.1.4)
- Calibrating the Vacuum Degas Assembly (<u>Section 5.1.5</u>)

5.1.1 Chromeleon Wellness Panel Overview

NOTE Do not open a System Wellness Control Panel if the name includes "Service.pan." These Wellness panels are reserved for use by Dionex Service Representatives.

To Open the Wellness Panel

- 1. Open the Chromeleon Browser and expand the **Dionex Templates** folder.
- 2. Expand the Panels folder and then the Wellness folder.
- 3. In the right pane of the Browser window, double-click **ICS-1000_1500_2000_Wellness_user.pan**. The Wellness Panel appears.
- 4. Open the **Control** menu and click the name of the ICS-1500 timebase at the bottom of the menu. This connects the Wellness Panel to the ICS-1500 and enables the controls on the panel.

System Status					
Calibration Diagnostic Pump Calibration View Calibration values into the Audit Trail					
Calibration Details:	ls On	Off			•
Update Wellness Database—		_r Degas Calibration———		Conductivity Cell Calibration	1
Press for instructions:	Instructions	Press for instructions:	Instructions	Press for instructions:	Instructions
Upload	Loading	Degas Calibration:	Calibrate	Set Cell Temp to 35 C:	Cell 35 C
Pump Flow Rate Calibration		Log Calibration Value:	Log	Set Flow Rate to 1.00:	1.00 mL/min
Press for instructions:	Instructions	Degas Pressure:	0	Total Conductivity:	0.061 µS
Reset Flow Rate Cal:	Reset Cal	Current Cal. Date:	3/19/2003	Cond. Cell Calibration:	Calibrate
Set Flow Rate to 1.00:	1.00 mL/min	Last Calibration Date:	3/19/2003	Log Calibration Value:	Log
Current Pump Pressure:	800 psi	rElectric Conductivity Cell Ca	libration	Current Calibration Date:	3/19/2003
5.00 minute timer:	5.00 min	Press for instructions:	Instructions	Last Calibration Date:	3/19/2003
Enter new Flow Rate Cal:	5.0 g 📫	Conductivity Cell Offset Cal:	Offset Cal.	rDummy Cell Test	
Store Calibration Value:	Calibrate	Conductivity Cell Slope Cal:	Slope Cal.	Press for instructions:	Instructions
Log Calibration Value:	Log	Current Calibration Date:	3/19/2003	Dummy Cell:	On Off
Current Calibration Date:	3/19/2003	Last Calibration Date:	3/19/2003	Log Dummy Cell Value:	Log
Last Calibration Date:	3/19/2003	1]		

Figure 5-1. Chromeleon Wellness Panel

Use the Wellness Panel to perform the following functions:

- Calibrate the pump flow rate
- Calibrate the vacuum degas assembly
- Calibrate the conductivity cell
- Test the conductivity cell electronics, using a dummy cell
- Upload calibration values from the ICS-1500 to the Chromeleon Wellness database

After completing a calibration procedure from the touch screen, always update the Chromeleon Wellness database by clicking the Upload button on the Chromeleon Wellness Panel (see <u>Figure 5-1</u>). This action ensures that the current calibration information is stored in Chromeleon as well as in the ICS-1500.

5.1.2 Diagnostic and Calibration Touch Screen Overview

Select **DIAGNOSTIC** from the touch screen menu of pages. The **DIAGNOSTIC** page opens (see <u>Figure 5-2</u>). From there, you can access individual diagnostic and calibration pages.

NOTE The Service button provides access to service functions that are performed only by Dionex personnel. An access code is required to go to the service pages.

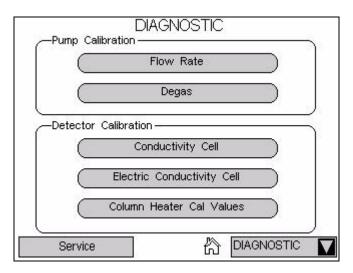


Figure 5-2. System Diagnostic Menu Page

5.1.3 Calibrating the Conductivity Cell

When to Calibrate

- After every 6 months of use
- **NOTE** Do not use this procedure to calibrate a new cell. If you are replacing a cell, see the instructions in <u>Section 5.9</u> to install the new cell and calibrate it.

Items Needed	Description
1.0 mM KCl solution	Prepare by dissolving 0.07456 g of reagent- grade KCl in 1 liter of 18-megohm DI water.
Backpressure tubing to provide at least 7 MPa (1000 psi)	Use 0.076-mm (0.003-in) ID yellow PEEK tubing (P/N 049715).

 Open the ICS-1500 Wellness Panel in Chromeleon (see Section 5.1.1), oropen the touch screen ELECTRIC CONDUCTIVITY CALIBRATION page (see Figure 5-3).

ELECTRIC CONDUCTIV	/ITY	CALIBRATION
Total Conductivity	0.00	Sų O
Cell Constant	0.00	0000
Run Offset Cal		
Wait until this calibration is	done be	fore doing slope cal.
Run Slope Cal WARN	ING: TH	IS WILL ERASE THE
PRIOR SLOPE CALIBRATION A	ND STO	ORE A NEW VALUE
Fine Offset 0.0000000	Slope	0.0248353 X 10 ⁻⁶
Coarse Offset 0.0000000	Slope	0.3973643 X 10 ⁻⁶
	尙	

Figure 5-3. Electric Conductivity Calibration Page

- 2. On the Wellness Panel under Electric Conductivity Cell Calibration, click Offset Cal, or touch Run Offset Cal on the ICS-1500 touch screen.
- 3. When the offset calibration is complete, click **Slope Cal** on the Wellness Panel, or touch **Run Slope Cal** on the ICS-1500 touch screen.
- 4. If you are using the Wellness Panel, click **Log** to record the new calibration values in the Audit Trail.
- 5. Disconnect the pump output line from the injection valve.
- 6. Disconnect the line from the suppressor **ELUENT OUT** port to the cell inlet and connect the pump output line directly to the cell inlet.
- 7. Verify that there is a minimum of 7 MPa (1000 psi) of backpressure.
- 8. If you are using the touch screens to perform the calibration, open the **CONDUCTIVITY CELL** page (see Figure 5-4).

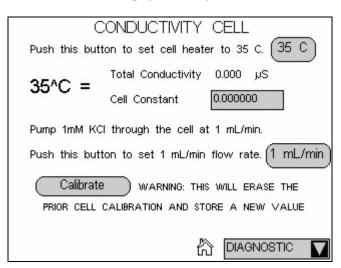


Figure 5-4. Conductivity Cell Page

9. On the Wellness Panel under Conductivity Cell Calibration, click Cell 35 C, or touch 35 C on the ICS-1500 touch screen. Allow the cell to reach this temperature and then wait an additional 5 minutes to let it stabilize. When the temperature has stabilized, an "=" symbol is displayed to the right of the temperature reading on the CONDUCTIVITY CELL page.

- 10. Select **1.00 mL/min** to begin pumping 1.0 mM KCl through the cell at 1.0 mL/min.
- Wait until the total conductivity reading stabilizes (in about 15 minutes) and then select Calibrate on the Wellness Panel or the ICS-1500 touch screen.

After calibration, the conductivity reading should be $147.00 \pm 2 \mu S$ and the cell constant should be between 120 and 180. If this is not the case, contact Dionex for help.

- 12. If you are using the Wellness Panel, click **Log** to record the new calibration values in the Audit Trail.
- 13. If you are using the ICS-1500 touch screen, record the new calibration values in the Chromeleon Wellness database. To do this, open the Wellness Panel (see Section 5.1.1) and click Upload under Update Wellness Database.
- 14. Flush the KCl solution from the system by pumping deionized water through the cell. When the conductivity drops to less than 1 μ S/cm, stop the pump.
- 15. Reconnect the pump to the injection valve and reconnect the line from the suppressor to the cell inlet.

5.1.4 Calibrating the Flow Rate

When to Calibrate

If you run the ICS-1500 Operational Qualification or Performance Qualification and it fails.

Items Needed

- 0.076 mm (0.003 in) ID yellow PEEK tubing (P/N 049715) to create 14 ± 2 MPa (2000 ± 300 psi) of backpressure (if needed)
- Deionized water
- Balance capable of weighing more than 10 grams with 0.001 grams readability
- Tared beaker

To Calibrate

 Open the ICS-1500 Wellness Panel in Chromeleon (see <u>Section 5.1.1</u>), or open the ICS-1500 touch screen FLOW RATE page (see Figure 5-5).

FLOW RATE
First push Reset Cal button. (Reset Cal)
Stabilize at 1 mL/min at 2000psi +/- 200psi for 20 min.
Push this button to set 1 mL/min flow rate. 1 mL/min
Collect water into tared beaker for exactly 5 minutes.
Enter weight of water: 0.000000 g
Wait 15 minutes before re-checking.
Pressure 2016 psi

Figure 5-5. Flow Rate Page

2. Verify that there is 14 ± 1.4 MPa (2000 ± 200 psi) of backpressure.

- 3. On the Chromeleon Wellness Panel under **Pump Flow Rate Calibration**, select **Reset Cal**, or touch **Reset Cal** on the ICS-1500 touch screen.
- 4. Select **1 mL/min** to set the flow rate and begin pumping deionized water.
- 5. Allow the pump to stabilize for 20 minutes.
- 6. If you are using the Wellness Panel, click **5.00 min** to start the timer. If you are using the touch screen, start an external timer. Immediately start collecting water into the tared beaker.
- 7. Collect the water for exactly 5.00 minutes.
- 8. Enter the weight of the water (in grams).
- 9. If you are using the Wellness Panel, click **Calibrate** to download the value to the ICS-1500.
- 10. To recheck the value, wait at least 15 minutes, and then repeat the calibration.
- 11. If you are using the Wellness panel, click **Log** to record the new calibration value in the Audit Trail.
- 12. If you performed the calibration from the ICS-1500 touch screen, record the new calibration values in the Chromeleon Wellness database. To do this, open the Wellness Panel (see Section 5.1.1) and click **Upload**.

5.1.5 Calibrating the Vacuum Degas Assembly

When to Calibrate

- After every 6 months of use
- Open the ICS-1500 Wellness Panel in Chromeleon (see <u>Section 5.1.1</u>), or open the ICS-1500 touch screen PUMP DEGAS page (see <u>Figure 5-6</u>).

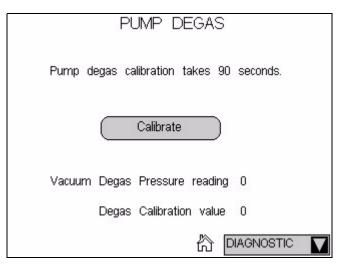


Figure 5-6. Pump Degas Page

- 2. On the Wellness Panel under **Degas Calibration**, select **Calibrate**, or touch **Calibrate** on the ICS-1500 touch screen. The degas pump runs for 90 seconds to allow a vacuum to be created. After 90 seconds, the vacuum degas pressure reading is recorded. When the vacuum degas assembly is running in monitor mode, this calibration value is used to determine when to turn on the degas pump.
- 3. If you are using the Wellness panel, click **Log** to record the new calibration value in the Audit Trail.
- 4. If you performed the calibration from the ICS-1500 touch screen, record the new calibration values in the Chromeleon Wellness database. To do this, open the Wellness Panel (see Section 5.1.1) and click **Upload** under **Update Wellness Database**.

5.2 Isolating a Restriction in the Liquid Lines

A restriction in the liquid plumbing will cause excessive system backpressure.

- 1. Begin pumping eluent through the system (including the columns).
- 2. Follow the ICS-1500 flow schematic in Figure 5-7 and work backward through the system, beginning at the suppressor **Regen Out** exit. One at a time, loosen each fitting and observe the pressure. The connection at which the pressure drops abnormally indicates the point of restriction.

NOTE The numbers on the flow schematic indicate the order in which liquid flows through the system components.

If the restriction has caused such high pressure that the system cannot be operated, you must work forward through the flow schematic, adding parts one at a time until an abnormal pressure increase (and hence, the restriction) is found.

3. If the restriction is in the tubing or fitting, remove the restriction by back flushing or by replacing the tubing or fitting (see Section 5.3).

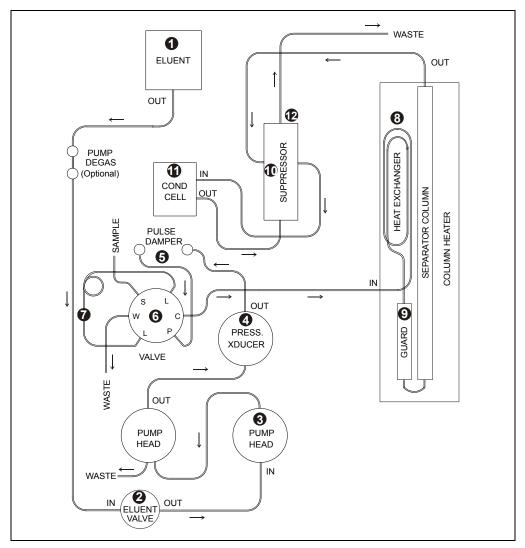


Figure 5-7. ICS-1500 Flow Schematic

NOTE The numbers on the flow schematic indicate the order in which liquid flows through the system components.

5.3 Replacing Tubing and Fittings

The ICS-1500 is plumbed with the tubing and tubing assemblies listed below.

Tubing Size and Type	Color	Used For
0.125-mm (0.005-in) ID PEEK (P/N 044221)	Red	Connection from pump pulse damper to pressure transducer
0.25-mm (0.010-in) ID PEEK (P/N 042690)	Black	Connections between other system components
0.50-mm (0.020-in) ID PEEK (P/N 042855)	Orange	Connection from injection port to injection valve
0.75-mm (0.030-in) ID PEEK (P/N 044777)	Green	Connection from injection valve to waste
1.58-mm (0.062-in) ID Teflon® (P/N 014157)	Clear	Connection from pump to degas or eluent reservoir; pump waste
25 μL sample loop (P/N 042857)	Orange	Connection between ports L (1) and L (4) on the injection valve

- 10-32 fittings (P/N 043275) and ferrules (P/N 043276) are used for most tubing connections. For tightening requirements, refer to *Installation of Dionex Liquid Line Fittings* (Document No. 031432). The manual is on the Dionex Reference Library CD-ROM (P/N 053891).
- 1/8-in fittings (P/N 052267) and ferrules (P/N 048949) are used for connections to the suppressor **REGEN OUT** port and the eluent reservoir.

5.4 Rebuilding the Injection Valve

Dionex recommends rebuilding the injection valve annually. The Injection Valve Rebuild Kit (P/N 057896) contains all required replacement parts.

NOTE Substitution of non-Dionex parts may impair valve performance and void the product warranty.

- 1. Turn off the pump from the ICS-1500 Control Panel in Chromeleon or from the touch screen **HOME** page.
- 2. Open the ICS-1500 front door.
- 3. Disconnect each liquid line connected to the injection valve.
- 4. Follow the instructions provided in the Rebuild Kit to replace the rotor seal, isolation seal, and stator face.
- 5. Reconnect all liquid lines to the injection valve (see Figure 5-8).
- 6. Close the door.
- 7. Turn on the pump.

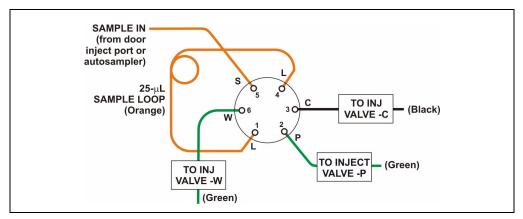


Figure 5-8. Injection Valve Plumbing

5.5 Cleaning and Replacing the Pump Check Valves

A dirty check valve causes erratic flow rates and pressures. In addition, it may cause the pump to lose prime and/or be difficult to reprime. If possible, replace dirty check valves. If new check valves are not available, follow the instructions for cleaning.

Replacing Check Valves

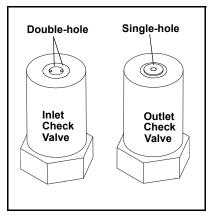

- 1. Close the eluent valve from the ICS-1500 Control Panel in Chromeleon (or open the ICS-1500 touch screen **PUMP** page and select **Eluent Valve Closed**).
- 2. Turn off the main power switch, to ensure that you do not unintentionally start the ICS-1500.
- 3. To prevent contamination of pump parts, put on a pair of rubber gloves before disassembling the pump head.
- 4. Disconnect the tube fittings from the inlet and outlet check valve assemblies on the primary pump head (see Figure 5-9).
- 5. Use a 1/2-inch wrench to loosen both check valve assemblies. Remove the check valve assemblies from the pump head.

Figure 5-9. Pump Heads

NOTE The *inlet* check valve assembly housing has a 1/4-28 port. The *outlet* check valve assembly housing has a 10-32 port.

- 6. If you are installing new cartridges (P/N 045994) in the existing check valve housings, place the cartridge in the *inlet* check valve housing with the double-hole end of the cartridge visible and place the cartridge in the *outlet* housing with the single-hole end visible.
 - NOTE The pump will not operate properly unless the cartridge is installed in the housing in the correct orientation. Liquid flows through the check valve in the large single hole and out the small double holes.

7. Install the inlet check valve assembly (P/N 045722) on the bottom of the primary pump head. Install the outlet check valve assembly (P/N 045721) on the top of the head. Tighten the check valves fingertight, and then use a wrench to tighten an additional one-quarter to one-half turn.

Overtightening may damage the pump head and check valve housing and crush the check valve seats.

- 8. Reconnect the liquid lines. Turn on the ICS-1500 main power.
- 9. Open the eluent valve from the ICS-1500 Control Panel in Chromeleon (or select **Eluent Valve Closed** on the ICS-1500 touch screen **PUMP** page).
- 10. Prime the pump (see <u>Section B.12</u>).
- 11. When the ICS-1500 is at operating pressure, check for leaks from the check valves. Tighten a check valve a *little more* only if it leaks.

Cleaning Check Valves

- 1. Carefully remove the check valve cartridges from the valve housings.
- 2. Place the check valve housings and cartridges in a beaker with methanol. Sonicate or agitate the parts for several minutes.
- 3. Rinse each check valve housing and cartridge thoroughly with filtered deionized water.
- 4. See <u>Step 6</u> through <u>Step 11</u> above to reinstall the check valves and complete the procedure.

5.6 Replacing a Pump Piston Seal and Piston Rinse Seal

A damaged seal allows leakage past the piston, as well as leakage from the piston seal wash housing. The pump may be difficult to prime, flow rates may be unstable, and there may be baseline noise.

Preparation

- 1. Rinse the pump flow path with deionized water. Direct the flow to waste by opening the waste valve on the secondary pump head (see Figure 5-12). To open the valve, turn the knob one-quarter to one-half turn counterclockwise.
- 2. After rinsing, close the waste valve.
- 3. Close the eluent valve from the ICS-1500 Control Panel in Chromeleon (or open the touch screen **PUMP** page and select **Eluent Valve Closed**).
- 4. To prevent contamination of pump parts, put on a pair of rubber gloves before disassembling the pump head.

Removing the Head and Piston

- 1. Turn off the main power switch, to ensure that you do not unintentionally start the ICS-1500.
- 2. Disconnect all tubing connections to the pump head.
- 3. Locate the open end wrench (P/N 014605) provided in the ICS-1500 Ship Kit (P/N 057905). Use the wrench to remove the two acorn nuts (see Figure 5-9) from the pump head.
- 4. Slowly pull the head and allow it to separate from the housing. Carefully disengage the head from the piston by pulling the head straight off and away from its mounting studs.

Lateral motion while disengaging the pump head from the piston may break the piston.

Un mouvement latéral pendant la séparation de la tête et du piston peut casser le piston.

Vermeiden Sie Seitwärtsbewegungen, wenn Sie den Kopf vom Kolben lösen. Andernfalls kann der Kolben brechen.

5. Place the head (front end down) on a clean work surface and lift off the spacer to expose the piston seal (see Figure 5-10 or Figure 5-11).

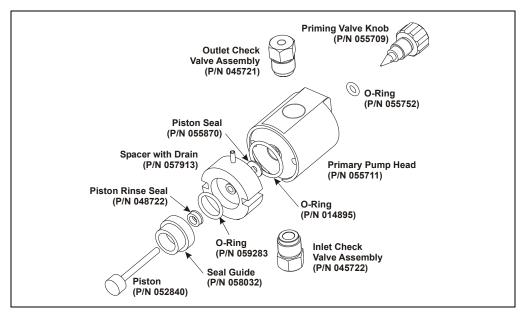


Figure 5-10. Primary Pump Head

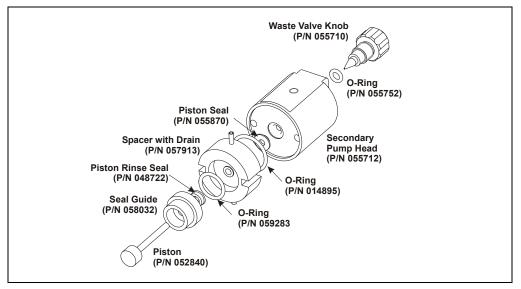
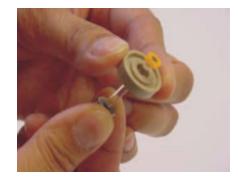



Figure 5-11. Secondary Pump Head

6. The piston does not come off as part of the pump head assembly because it is captured by a magnetic retention system. After removing the pump head, hold the shaft of the piston (near the base), tilt the piston slightly, and pull the piston away from the pump.

Installing the New Piston Rinse Seal

- 1. Remove the guide from the spacer to expose the piston rinse seal and O-ring. Remove the O-ring.
- 2. Remove the old piston rinse seal from the guide as follows:
 - a. Hold the guide with the flat side facing up.
 - b. To dislodge the piston rinse seal, gently insert the shaft of the piston through the small hole in the center of the guide (see photo below).

- c. Pull the seal off the end of the piston shaft and remove the piston from the guide.
- 3. Hold the new piston rinse seal (P/N 048722) with the grooved side facing up.
- 4. Using your fingertip, gently press the piston rinse seal into the guide until the edge of the seal is below the surface of the guide.

IMPORTANT

The piston rinse seal is made of soft plastic. Do not press on the seal with anything hard or sharp, including your fingernail. If the seal is nicked or gouged, it will not seal properly and may result in leaks.

- 5. Place the new O-ring (P/N 059283) into the groove in the guide.
- 6. Remove the O-ring from the groove in the flat side of the spacer and replace it with the new O-ring (P/N 014895).

- 7. In one hand, hold the guide with the O-ring and piston rinse seal facing up (this prevents the O-ring from falling out). In the other hand, hold the spacer with the cavity facing down.
- 8. Gently press the guide into the cavity in the spacer until it is fully seated.

Removing the Piston Seal from the Head

- 1. Fill the head cavity with deionized water by injecting the liquid through either the piston opening or the inlet check valve.
- 2. Reinsert the piston approximately 1/8 inch into the seal.
- 3. If this is the *primary* pump head, install a 10-32 fitting plug (P/N 042772) on the outlet check valve. Tighten the plug.
- 4. If this is the *secondary* pump head, install a 10-32 fitting plug (P/N 042772) in both the inlet and outlet ports. Tighten the plugs.
- 5. Push the piston into the head. (This should hydraulically unseat the seal from the head.) Remove the piston and pull off the seal.

NOTE If the piston seal is not removed, make sure the 10-32 fitting plug(s) are tight and add more water. Make sure the head contains no air bubbles, and then repeat Steps 2 and 5.

6. Remove the 10-32 fitting plug(s).

Installing the New Piston Seal

- 1. Open the priming valve knob (primary pump head) or waste valve knob (secondary pump head) by turning the knob one-quarter to one-half turn counterclockwise.
- 2. Push the piston through the spacer and then through the new seal. Insert the piston and seal into the pump head until the seal makes contact with the bottom of the counterbore.

NOTE If necessary, lubricate the seal with a small amount of isopropyl alcohol to facilitate insertion.

- 3. To seat the seal, push down on the spacer until it is flush with the head. A clicking sound indicates that the seal is correctly seated.
- 4. Close the priming valve knob or waste valve knob.

Reinstalling the Head and Piston

Dionex recommends reinstalling the head and piston as a single assembly, so that the piston centers itself onto the magnetic follower.

- 1. Hold the assembled spacer and guide with the drain tubes aligned vertically and press the spacer into the head until it is flush with the indented surface of the head.
- 2. Insert the piston so that 1/4 inch of the shaft is exposed. This ensures that the magnet in the follower picks up the piston. (The follower is the cylinder that holds the piston in place as it moves in and out of the pump head assembly.)
- 3. Reinstall the head and piston assembly; use a wrench to tighten the nuts evenly (12 in-lb torque).

Completing the Procedure

- 1. Reconnect all liquid lines to the pump head.
- 2. Turn on the main power switch.
- 3. Open the eluent valve.
- 4. Prime the pump (see <u>Section B.12</u>).

5.7 Replacing a Pump Piston

Continued leaking of the piston seal after installation of a new seal (assuming the pump head is tight) indicates a dirty, scratched, or broken piston.

Follow the instructions in Section 5.6 to install a new piston (P/N 052840) and piston seal (P/N 055870).

5.8 Replacing the Waste Valve or Priming Valve O-Ring

A damaged O-ring causes leakage around the base of the waste valve or priming valve knob.

- 1. Close the eluent valve from the Control Panel in Chromeleon (or open the ICS-1500 touch screen **PUMP** page and select **Eluent Valve Closed**).
- 2. Turn off the main power switch, to ensure that you do not unintentionally start the ICS-1500.
- 3. To remove the waste valve or priming valve from the pump head (see <u>Figure 5-12</u>), turn the knob counterclockwise until it is loose, and then pull the knob straight out of the cavity in the pump head.

Figure 5-12. Waste and Priming Valves

4. If the O-ring is removed with the valve knob in Step 2, pull the O-ring off the end of the knob (see Figure 5-13). If the O-ring is not removed with the valve knob, insert a thin object (for example, the bent end of a paper clip) into the cavity in the pump head and carefully pull out the O-ring. **Do not scratch the cavity.**

IMPORTANT Scratches in the cavity will cause leaks around the base of the knob while the pump is being primed.

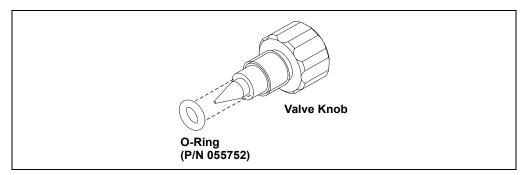


Figure 5-13. Waste Valve or Priming Valve O-Ring Replacement

- 5. Slide a new O-ring (P/N 055752) over the end of the valve.
- 6. To reinstall the valve containing the new O-ring, turn the knob clockwise and then tighten fingertight.

NOTE It is normal to encounter resistance after several rotations of the knob; the O-ring is being pushed into the cavity of the pump head.

- 7. Turn on the main power switch.
- 8. Open the eluent valve.
- 9. Prime the pump (see <u>Section B.14</u>).

5.9 Replacing the Conductivity Cell

- 1. Turn off the ICS-1500 power.
- Open the front door and disconnect the tubing from the CELL IN and CELL OUT fittings (see <u>Figure 5-14</u>, View A). Loosen the two screws on the cell front cover. The screws remain attached (see <u>Figure 5-14</u>, View B).

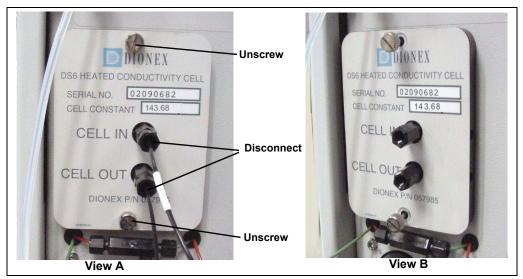


Figure 5-14. Removing the Cell Front Cover

- 3. Grip the two loosened screws and pull the cell cover toward you to remove it from the component panel. **Do not pull** from the CELL IN and CELL OUT fittings.
- 4. Continue pulling on the cover until the attached cell assembly slides out the front of the ICS-1500 (see Figure 5-15).

Figure 5-15. Removing the Cell Assembly

- 5. Slide the new cell assembly into the opening in the component panel until it stops and the cell cover is flush against the component panel. The cell's electronic connector automatically plugs into a connector inside the ICS-1500 when you push the assembly into the opening.
- 6. Tighten the screws on the cell front cover fingertight.
- 7. Reconnect the inlet and outlet lines.
- 8. Turn on the ICS-1500 power.
- 9. Calibrate the new cell in Chromeleon or on the ICS-1500 touch screen **DIAGNOSTIC** page. Cell calibration of a new cell consists of three parts:
 - Run the offset calibration, which measures the output of the cell electronics alone and determines an offset value to be applied to raw conductivity readings.
 - Run the slope calibration, which measures the output of the cell electronics when a built-in dummy cell, which provides a constant conductivity reading of 21 µS, is automatically enabled. The slope value is applied to raw conductivity readings.
 - Enter the cell constant measured at the factory. The ICS-1500 uses the cell constant to determine the measured conductivity.

To calibrate the cell in Chromeleon:

- a. Open the Wellness Panel (see <u>Section 5.1.1</u>)
- b. Under Electric Conductivity Cell Calibration, click Offset Cal.
- c. When the offset calibration is complete, click Slope Cal.
- d. Click Calibration Details. Under Conductivity Cell Cal Details, enter the Cell Constant value printed on the front of the cell.
- e. In the field next to the **Download** button, verify that **Current** is selected and then click **Download** to download the new value to the ICS-1500.
- f. To ensure the new values are recorded in the ICS-1500 memory, do not turn off the ICS-1500 power for at least 1 minute after downloading.

To calibrate the cell on the ICS-1500 touch screen DIAGNOSTIC page:

- a. Go to the **DIAGNOSTIC** page and touch **Electric Conductivity Cell**.
- b. On the ELECTRIC CONDUCTIVITY CALIBRATION page (see Figure 5-16), touch Run Offset Cal.

ELECTRIC CONDUCTI	VITY	CALIBRA	TION
Total Conductivity	0.00	2y 01	
Cell Constant	0.00	0000	
Run Offset Cal			
Wait until this calibration is	done be	efore doing slo	ope cal.
Run Slope Cal WARM	NING: TH	IS WILL ERAS	SE THE
PRIOR SLOPE CALIBRATION /	AND STO	ORE A NEW	VALUE
Fine Offset 0.0000000	Slope	0.0248353	X 10 ⁻⁶
Coarse Offset 0.0000000	Slope	0.3973643	X 10 ⁻⁶
	欱	DIAGNOST	10 🔽

Figure 5-16. Electric Conductivity Calibration Page

- c. When the offset calibration is complete, touch Run Slope Cal.
- d. Touch the **Cell Constant** field and enter the value printed on the front of the cell.
- e. To ensure the new calibration values are recorded in the ICS-1500 memory, do not turn off the ICS-1500 power for at least 1 minute.
- f. Record the new calibration values in the Chromeleon Wellness database. To do this, open the Wellness Panel (see <u>Section 5.1.1</u>) and click **Upload** under **Update Wellness Database**.

5.10 Replacing the Suppressor

Refer to the suppressor manual for guidance about when to replace a suppressor. Suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

- 1. Refer to the suppressor quick start guide (shipped with the suppressor) for instructions on preparing the suppressor before initial use and for additional installation details.
- 2. Turn off the pump from the ICS-1500 Control Panel in Chromeleon or from the touch screen **HOME** page.
- 3. Open the front door of the ICS-1500.
- 4. Disconnect the two eluent and the two regenerant lines from the suppressor.
- 5. To remove the suppressor from the component mounting panel, slide it up to detach it from the mounting tabs on the panel and then pull it toward you.
- Continue pulling the suppressor out until the yellow connector on the cable inside the ICS-1500 is outside the panel (see <u>Figure 5-17</u>).
- 7. Disconnect the suppressor cable (twist the ring on the yellow connector and pull the two connectors apart).

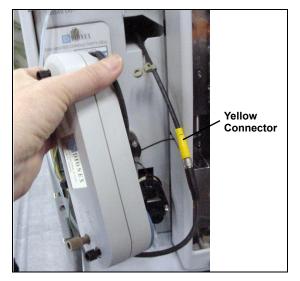


Figure 5-17. Removing the Suppressor

- 8. Connect the cable from the new suppressor to the ICS-1500 cable (align the pins on the two connectors and push them together).
- 9. Orient the suppressor with the **REGEN OUT** fitting on top and the cables to the right.

- 10. Push the cables into the opening in the component panel.
- Align the top of the suppressor with the guide line printed on the component panel (see <u>Figure 5-18</u>) and align the slots on the rear of the suppressor with the tabs on the panel.
- Press the suppressor onto the tabs and then slide it down until it locks into place. Pull slightly on the center of the suppressor to verify that it is securely fastened. Note: Some suppressors require more force to secure them onto the tabs.
- 13. Connect the two eluent and two regenerant lines to the new suppressor.
- 14. Close the ICS-1500 front door.



Figure 5-18. Suppressor Guidelines and Mounting Tabs on Component Panel

5.11 Replacing the Column Heater

- 1. Turn off the ICS-1500 power.
- 2. Open the front door of the ICS-1500.
- 3. Follow the steps below to remove the existing column heater:
 - a. Unscrew the two thumbscrews on the heater cover (they remain attached to the cover).
 - b. Pull the heater cover straight out to remove it.

c. Unscrew the six thumbscrews on the top metal plate (see <u>Figure 5-19</u>) and remove the plate.

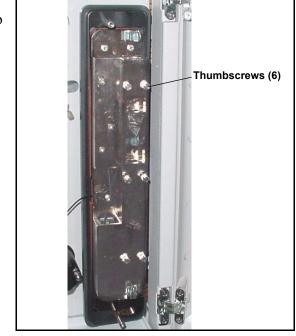


Figure 5-19. ICS-1500 Column Heater Cover Removed

- d. Remove the columns from the column heater.
- e. Pull the column heater straight toward you to remove it from the component panel.
- 4. Before installing the new column heater, write down the two calibration values (offset and slope) recorded on the back of the heater.
- 5. Align the connector on the back of the new column heater (P/N 058060) with the connector on the component panel and push the column heater onto the component panel.
- 6. Remove the heater cover and the metal plate on the new heater.
- 7. Install the columns in the new heater and replace the top metal plate and heater cover.
- 8. Turn on the ICS-1500 power.

9. Enter the column heater calibration values in Chromeleon or on the ICS-1500 touch screen **DIAGNOSTIC** page as follows:

To enter the calibration values in Chromeleon:

- a. Open the Wellness Panel (see <u>Section 5.1.1</u>) and click **Calibration Details**.
- b. Under Column Heater Calibration Values, enter the Column Heater Offset and Column Heater Slope values recorded in <u>Step 4</u>.
- c. In the field next to the **Download** button, verify that **Current** is selected and then click **Download** to download the new calibration values to the ICS-1500.
- d. To ensure the new calibration values are recorded in the ICS-1500 memory, do not turn off the ICS-1500 power for at least 1 minute after downloading the values.

To enter the calibration values on the ICS-1500 touch screen **DIAGNOSTIC** page:

- a. Go to the DIAGNOSTIC page and touch Column Heater Cal Values.
- b. On the COLUMN HEATER CAL VALUES page (see Figure 5-20), enter the Calibrated Offset and Calibrated Slope values recorded in <u>Step 4</u>.

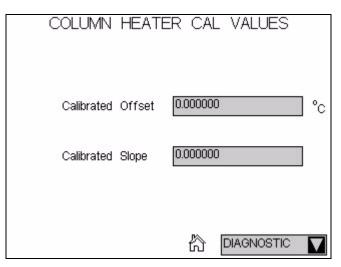


Figure 5-20. Column Heater Cal Values Page

- c. To ensure the calibration values are recorded in the ICS-1500 memory, do not turn off the ICS-1500 power for at least 1 minute after entering the values.
- d. Record the calibration values in the Chromeleon Wellness database. To do this, open the Wellness Panel (see Section 5.1.1) and click Upload under Update Wellness Database.

5.12 Replacing the Column Heater Heat Exchanger

- 1. Turn off the ICS-1500 power.
- 2. Open the front door of the ICS-1500.
- 3. Unscrew the two thumbscrews on the column heater cover (they remain attached to the cover).
- 4. Pull the heater cover straight out to remove it.
- 5. Unscrew the six thumbscrews on the top metal plate (see <u>Figure 5-21</u>) and remove the plate.
- 6. Disconnect the heat exchanger inlet line from Port C on the injection valve.

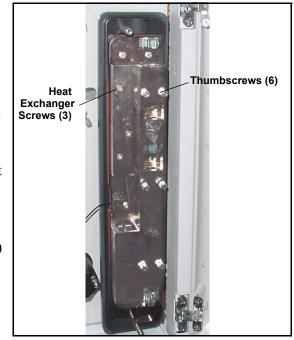


Figure 5-21. ICS-1500 Column Heater Cover Removed

- 7. Disconnect the heat exchanger outlet line from the guard column inlet.
- 8. Use an Allen wrench to remove the three screws from the heat exchanger metal plate and remove the plate (with the tubing) from the heater.
- 9. Remove the plastic backing from the new heat exchanger (P/N 059979, with 0.25-mm (0.010-in) ID tubing; P/N 060943, with 0.125-mm (0.005-in) ID

tubing) and press the heat exchanger onto the heater. Replace the screws removed in <u>Step 8</u>.

- 10. Connect the new heat exchanger inlet line to Port C on the injection valve and connect the outlet line to the guard column inlet.
- 11. Reinstall the top metal plate and the heater cover.

5.13 Replacing the Eluent Valve

- 1. Turn off the power to the ICS-1500.
- 2. Open the ICS-1500 front door.
- 3. To prevent an eluent leak during the procedure, disconnect the eluent line from the reservoir cap. Or, plug the line on the left side of the valve with a union (P/N 039056 and a plug (P/N 037268) after disconnecting the liquid line from the valve (see Step 4).
- 4. Disconnect the two liquid lines connected to the eluent valve (see Figure 5-22).
- 5. Unscrew and remove the two screws that attach the valve to the component panel (see Figure 5-22). Save the screws.

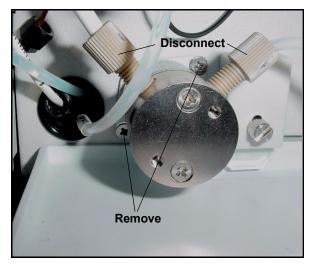
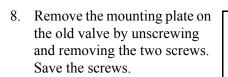



Figure 5-22. Eluent Valve

- 6. Pull the valve straight out from the component panel and begin pulling the attached cable out of the opening in the panel.
- The cable connects to a cable inside the ICS-1500. Continue pulling until the connectors for the two cables are outside the panel (see <u>Figure 5-23</u>). Disconnect the cables.

- 9. Thread the cable from the new eluent valve through the mounting plate.
- 10. Attach the mounting plate to the new valve using the screws removed in <u>Step 8</u>.

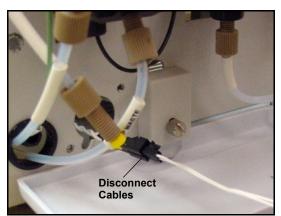


Figure 5-23. Eluent Valve Cable

Figure 5-24. Removing the Valve Mounting Plate

- 11. Connect the cable from the new valve to the ICS-1500 cable. Feed the cables back inside the ICS-1500.
- 12. Align the new valve on the component panel with the liquid ports facing up and attach it with the two screws removed in <u>Step 5</u>. Reconnect the liquid lines.
- 13. Turn on the power to the ICS-1500.
- 14. Prime the pump (see <u>Section B.14</u>).

5.14 Replacing the Leak Sensor

- 1. Turn off the power to the ICS-1500.
- 2. Open the ICS-1500 front door.
- Loosen the screw on the front of the leak sensor (see <u>Figure 5-25</u>). Note: The screw remains attached to the sensor.

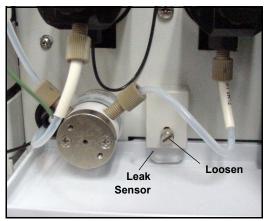


Figure 5-25. Leak Sensor

- 4. Remove the leak sensor from the component panel and pull the cable out of the opening in the panel.
- 5. The cable attached to the leak sensor connects to a cable inside the ICS-1500. Continue pulling the cable until the connectors for the two cables are outside of the panel (see Figure 5-26).
- 6. Disconnect the two cables.

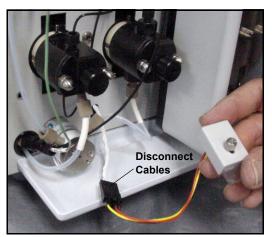


Figure 5-26. Leak Sensor Cable

- 7. Connect the cable from the new leak sensor to the ICS-1500 cable.
- 8. Feed the cables back inside the ICS-1500. Align the leak sensor with the component panel opening and fingertighten the screw.
- 9. Make sure the leak sensor does not touch the bottom of the drip tray.

5.15 Priming with Isopropyl Alcohol

- NOTE Prime the pump heads with isopropyl alcohol only if the two standard priming procedures described in Section B.12 are unsuccessful.
- 1. Connect a 10-mL syringe (P/N 054578) filled with isopropyl alcohol (IPA) to the port in the primary pump head (see Figure B-38).
- 2. Open the waste valve on the secondary pump head (see Figure B-38) by turning the knob one-quarter to one-half turn counterclockwise.
- 3. Click **Pump On** on the Chromeleon Control Panel to turn on the pump motor.
- 4. Open the priming valve on the primary pump head by turning it one-quarter to one-half turn counterclockwise.
- 5. Use the syringe to slowly push alcohol through the pump.

NOTE Be careful not to push any air trapped in the syringe through the pump. Check the waste line from the secondary pump head to verify that there are no air bubbles.

- 6. Close the priming valve. **Do not overtighten.** Disconnect the syringe from the priming valve.
- 7. Let the pump run for several minutes, to purge alcohol from the pump heads, and then click **Prime** and flush the heads with the desired eluent.

Isopropyl alcohol may damage some columns. Be sure to thoroughly rinse the alcohol from the pump, using the process described in Step 7.

- 8. Close the waste valve. Do not overtighten.
- 9. Select the flow rate required for the analysis.
- 10. Click **Pump Off** to turn off the pump motor. The pump is now ready for operation.

5.16 Changing Main Power Fuses

1. Turn off the main power switch.

HIGH VOLTAGE—Disconnect the main power cord from its source and also from the rear panel of the ICS-1500.

HAUTE TENSION—Débranchez le cordon d'alimentation principal de sa source et du panneau arrière du ICS-1500.

HOCHSPANNUNG—Ziehen Sie das Netzkabel aus der Steckdose und der Netzbuchse auf der Rückseite des ICS-1500.

- 2. The fuse holder is part of the main power receptacle (see Figure 5-27) on the ICS-1500 rear panel. To remove the fuse holder, squeeze the tab on the top of the holder to release it and pull the holder straight out of its compartment.
- 3. Replace the two fuses in the holder with new IEC 127 fast-blow fuses rated 3.15 amps (P/N 954745). Dionex recommends always replacing both fuses.
- 4. Reinsert the fuse holder into its compartment and push in until the tab clicks in place.
- 5. Reconnect the main power cord and turn on the power.

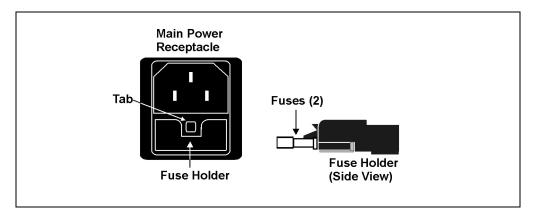


Figure 5-27. Main Power Fuse Holder

A.1 Electrical

Main Power	85 to 265 Vac, 47 to 63 Hz. The ICS-1500 power supply is auto- sensing and requires no voltage adjustment
Fuses	Two 3.15 amp fast-blow IEC 127 fuses (P/N 954745)

A.2 Physical

Dimensions	Height: 56.1 cm (22.1 in)
(without	Width: 22.4 cm (8.8 in)
reservoir)	Depth: 53.3 cm (21.0 in)
Weight	30 kg (66 lb)
Decibel Level	< 52 db (at "A WEIGHTING" setting)

A.3 Environmental

Operating Temperature	4 °C to 40 °C (40 °F to 104 °F)
Humidity	5 to 95% relative humidity, noncondensing
Operating Pressure	35 MPa (5000 psi) maximum liquid path (tubing, valve, columns, etc.)

A.4 Front Panel

Power LED On when power is present; off when no power is present

LCD Touch1/4 VGA (320 x 240 pixels) liquid crystal display with touch screen,Screenwhich provides:

- Local control of ICS-1500 components: pump, detector, suppressor, injection valve, column heater, vacuum degas, TTLs, and relays
- Display of conductivity data plot and operating status
- Local control of calibration and diagnostic functions

A.5 Pump

Туре	Dual-piston (in series), variable speed, 100 μL per revolution
Flow Rate	Settable range: 0.00 to 5.00 mL/min, in 0.01 increments Optimal Operational Range: 0.4 to 2.0 mL/min
Flow Accuracy	<1% of set value within the optimal operational range
Flow Precision	<0.2%
Operating Pressure	35 MPa (5000 psi), maximum
High Pressure Limit	0.7 to 34.4 MPa (100 to 5000 psi)
Low Pressure Limit	0.0 to 33.7 MPa (0 to 4900 psi)
Delay Volume	<800 µL
Pressure Ripple	<1% at 13.8 MPa (2000 psi) and 1.0 mL/min

A.6 Detector

Range	0 to 3200 μS (digital output) 0 to 3000 μS (analog output)
Temperature Compensation	1.7% per °C
Cell Drive	8 kH square wave
Linearity	Correlation >0.999 %RSD <5% to 800 μS

A.7 Conductivity Cell with Heat Exchanger

Cell Body	PEEK
Electrodes	Passivated 316 stainless steel
Active Volume	1.0 μL
Operating Temperature	30 to 55 °C (86 to 130 °F); must be at least 7 °C above the ambient temperature
Maximum Pressure	2 MPa (300 psi)

A.8 Injection Valve

Injection Valve	Two-position, six-port, electrically-activated valve with PEEK
	wetted components

A.9 Vacuum Degas Assembly (Optional)

Channel	Single-channel degas channel with degas membranes
Pump	Dual-stage diaphragm vacuum pump
Materials	Wetted materials, PEEK, PTFE

A.10 Column Heater

Operating 30 to 60 °C (86 to 140 °F); must be at least 5 °C above the ambient temperature

This chapter provides instructions for the initial installation of the ICS-1500 Ion Chromatography System.

- NOTE These installation instructions are also shipped with the ICS-1500 as a stand-alone printed manual (Document No. 031916).
- NOTE The order of the steps is important. It is especially important to install Chromeleon® before connecting the USB cable and turning on the ICS-1500 power.

B.1 Facility Requirements

- Make sure the ICS-1500 installation site meets the power and environmental specifications listed in Appendix A.
- Provide a sturdy workbench for the ICS-1500 of a height that ensures convenient access to the interior.
- Allow at least 15 cm (6 in) behind the ICS-1500 for power connections and ventilation. For optimal performance, install the ICS-1500 in a draft-free location, out of the path of air conditioning and heating vents.
- (Optional) Provide a clean gas source regulated to between 0.55 and 0.83 MPa (80 and 120 psi) for pressurization of the eluent reservoir.
- Use ASTM filtered, Type I (18-megohm) deionized water when preparing eluent and regenerant.

B.2 Unpacking the ICS-1500 System

1. After removing the ICS-1500 from the shipping box and removing the top layer of foam, remove the next layer of foam (see <u>Figure B-1</u>).

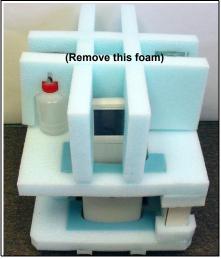


Figure B-1. ICS-1500 After Removing Shipping Box and First Layer of Foam

2. Set the eluent bottle on top of the ICS-1500 (see Figure B-2).

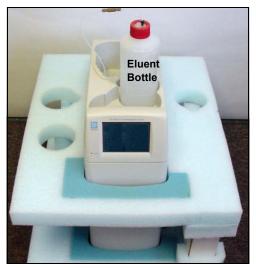
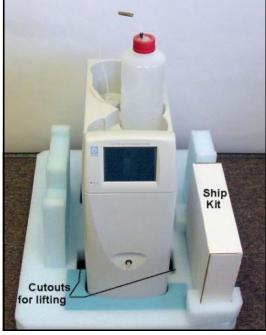



Figure B-2. ICS-1500 with Eluent Bottle

3. Remove the next layer of foam and remove the Ship Kit box (see Figure B-3).

Figure B-3. ICS-1500 with Ship Kit

- 4. The bottom foam layer has two cutouts on either side of the ICS-1500 module; use these as hand holds when lifting the module (see Figure B-3).
- 5. Lift the ICS-1500 out of the bottom layer of foam and set it on a workbench. Inspect the ICS-1500 for any shipping damage.

Two or more persons should lift the ICS-1500, which weighs 30 kg (66 lb). Lift the ICS-1500 only from each side of the cabinet bottom. Lifting from the front door will damage the door hinges.

Au moins deux personnes peuvent soulever le ICS-1500: il pèse 30 kg (66 lb). Ne soulevez le ICS-1500 que par chaque côté du fond de l'armoire. Son soulèvement par la porte du panneau avant endommagera les charnières de la porte.

Der ICS-1500 wiegt über 20 kg. Daher sollte das Gerät nur von zwei oder mehr Personen angehoben werden. Greifen Sie dazu an beiden Seiten unter das Gerät. Heben Sie den Autosampler nicht an der Vordertür an, da dadurch die Türangeln beschädigt werden könnten.

B.2.1 Unpacking the Computer (North America only)

- NOTE These instructions assume that Chromeleon® software and the software license were installed on the computer before shipping.
- 1. Remove the central processing unit (CPU), keyboard, mouse, and all documentation from the computer box and place these items on a workbench.
- 2. Remove the monitor from its box and place it on the workbench.
- 3. Follow the instructions in the computer installation guide to hook up the monitor, mouse, keyboard, and CPU.
- 4. Go on to Section B.4, "Installing the Chromeleon Software License.".

B.2.2 Unpacking the Computer (outside North America)

- 1. Refer to *Installing the Chromeleon IC System* (Document No. 031883) to verify that the computer being used meets Chromeleon specifications. The manual is on the Dionex Reference Library CD-ROM (P/N 053891).
- 2. Remove the central processing unit (CPU), keyboard, mouse, and all documentation from the computer box and place these items on a workbench.
- 3. Remove the monitor from its box and place it on the workbench.
- 4. Follow the instructions in the computer installation guide to hook up the monitor, mouse, keyboard, and CPU.
- 5. If Chromeleon is not installed on the computer, go on to <u>Section B.3</u>, "Installing Chromeleon."
- 6. If Chromeleon is already installed on the computer, go on to <u>Section B.4</u>, "Installing the Chromeleon Software License."

B.3 Installing Chromeleon

NOTES

- Windows® 2000 or Windows XP is required for controlling the ICS-1500 with Chromeleon. Chromeleon version 6.5 SP2 or later is required.
- To install Chromeleon, you must log onto Windows 2000 or XP with administrator privileges. Administrator privileges are not required to run Chromeleon.
- 1. Turn on the computer power.
- 2. Follow the Windows setup steps as they appear on the screen.
- 3. Verify that the monitor display is set to a minimum of 1024 x 768 with 16 bit color.
- 4. Insert the Chromeleon CD-ROM into the CD-ROM drive.
- 5. The Chromeleon Setup menu appears.
- 6. If the Setup menu does not appear automatically, go to the Autorun folder on the Chromeleon CD-ROM and double-click **autorun.exe**.
- 7. Select Launch Chromeleon Setup.
- 8. Setup now guides you through the installation procedure; follow the onscreen instructions as they appear.
- 9. When prompted, select whether to add the Chromeleon Server Monitor to the Startup group. If you select yes, the Server Monitor starts automatically when the computer is started, and the program icon appears in the taskbar.
- 10. When complete, go on to <u>Section B.4</u>, "Installing the Chromeleon Software License."

IMPORTANT

Installing DX-LAN Devices

If you will also be installing a module that requires a DX-LAN interface connection, verify that the following steps are completed before continuing:

- 1. If it is not already installed, install the DX-LAN card in the module. Refer to the operator's manual for the module for installation instructions.
- 2. Install the DX-LAN card in the computer.
- 3. Connect the module to the DX-LAN.
- 4. Install the DX-LAN card driver.

Instructions for Steps 2 through 4 are in *Installing the Chromeleon IC System* (Document No. 031883).

B.4 Installing the Chromeleon Software License

For the Chromeleon computer to control the ICS-1500, a valid software license must be installed. To install the license, you first install a dongle on the computer and then enter a license "Key Code" in Chromeleon. (A dongle is an adapter that is connected to the parallel PC interface or USB port. The dongle stores the serial number of a Chromeleon computer.)

NOTE If the software license is managed via a License Server, a dongle is not required.

- 1. Plug the dongle into the appropriate port on the computer (either the parallel or USB port, depending on the type of dongle). Tighten the connector screws on a parallel port dongle.
- If it is not already running, start the Chromeleon Server Monitor (select Start>Programs>Chromeleon>Server Monitor). The Server Monitor window opens.

- 3. Check the server status:
 - If "Chromeleon Server is running idle" is displayed, the license Key Code was entered before shipping the computer, and you can omit the remaining steps in this section. Click **Close** and go on to <u>Section B.5</u>.
 - If "Chromeleon Server is running idle (Evaluation Mode)" is displayed (see <u>Figure B-4</u>), the license Key Code has not yet been entered. If this is the case, go on to Step 4.

🥞 Chrom	eleon Serv	er Monitor		
Status	Chromeleor Serial No:	n Server is runn 648	ing idle (Evaluation Mode).	 <u>C</u> lose <u>H</u> elp Quit Monitor Config

Figure B-4. Server Evaluation Mode

4. Open Chromeleon (select Start>Programs>Chromeleon>Chromeleon).

5. Select **File>Preferences** to open the Preferences dialog box (see <u>Figure B-5</u>). Select the **License** tab and click **Dongle**. Enter the **Key Code** exactly as it appears on the Chromeleon Software License key code sheet. Click **OK**.

Preferences				×
Spectra Thun Browser	nbnails QI License	NT Editor	Spectr	a Library
Key Code:	×××× · D××××4			
Copy Protection	n Location			
C <u>N</u> one (Eval	luation Mode)			
C <u>H</u> ardprotec	t	1/0	0x030F	2
C Dionex AD	Converter	1/0	0x0314	2
C <u>U</u> VD3405/	170S Interface	1/0	0x0318	2
C Pump Cont	rol Card	1/0	0x0300	2 7
⊙ <u>D</u> ongle				
C License Se	rver 🖡	\T-00		
	OK	Cance		Apply

Figure B-5. Preferences: License Page

6. Check the Server Monitor status. It should now display "Chromeleon Server is running idle." (see Figure B-6).

🕈 Chrom	eleon Server Monitor	
- Status-	Chromeleon Server is running idle.	
	Serial No: 648	Config

Figure B-6. Server Running

- 7. Click **Close** to close the Server Monitor window.
- 8. Go on to Section B.5.

B.5 Connecting the ICS-1500 to the Chromeleon PC

The ICS-1500 rear panel provides a USB receptacle for connecting the ICS-1500 to a USB port on the Chromeleon PC. The rear panel also provides two USB ports for connecting other Dionex USB-compliant modules to the system.

IMPORTANT Do not turn on the power to the ICS-1500 or other USB module(s) until after you connect the USB cable.

Before connecting the USB cable, verify that Chromeleon is installed. If not, Windows will be unable to identify the new USB device when the power is turned on. See Section B.3 to install Chromeleon.

B.5.1 Connecting the ICS-1500 to the PC

- 1. Locate the USB cable (P/N 960779) in the ICS-1500 Ship Kit (P/N 057905).
- 2. Plug the cable's "A" connector into a USB port on the Chromeleon PC and plug the cable's "B" connector into the USB receptacle (labeled **FROM PC**) on the ICS-1500 rear panel (see Figure <u>B-7</u>).

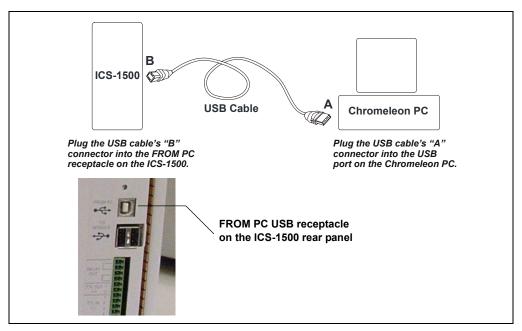


Figure B-7. Example Connections: One ICS-1500 Connected to the Computer

B.5.2 Connecting Additional USB Devices

The ICS-1500 provides two USB ports for connecting additional Dionex USB-compliant modules to the system.

To connect an additional USB module, plug the "A" connector on a USB cable into an "A" port (labeled **TO MODULE**) on the ICS-1500 rear panel and plug the cable's "B" connector into the USB receptacle on the USB module (see Figure B-8).

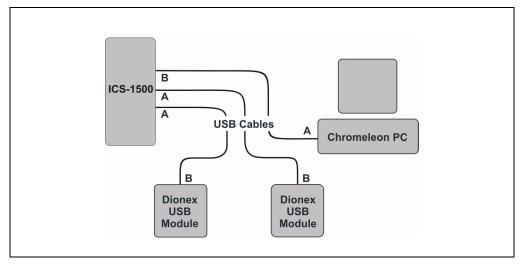


Figure B-8. Example Connections: Two Dionex USB Modules Connected to the ICS-1500

NOTE If the number of USB devices in the system exceeds the number of available USB ports, connect the devices to the system with a USB-compliant, full-speed external hub. One or more hubs is also required if the ICS-1500 or other USB device is more than 5 meters (16 ft) from the PC. Refer to the manual provided by the hub vendor for complete installation instructions.

IMPORTANT

The USB standard limits the USB cable length to 5 meters (16 ft). Each USB device can be separated from the PC by no more than five hubs. Thus, each USB device can be located no more than 30 meters (32 yds) from the PC.

B.6 Connecting the Power Cord

Connect the power cord (IEC 320 C13) (ordered separately) from the main power receptacle on the rear panel to a grounded power source. The ICS-1500 power supply is auto-sensing, so no adjustment is required to select the line voltage.

SHOCK HAZARD—To avoid electrical shock, use a grounded receptacle. Do not operate the ICS-1500 or connect it to AC power mains without an earthed ground connection.

The power supply cord is used as the main disconnect device. Make sure the socket-outlet is located near the ICS-1500 and is easily accessible.

Operation at AC input levels outside of the specified operating voltage range may damage the ICS-1500.

DANGER D'ÉLECTROCUTION—Pour éviter toute électrocution, il faut utiliser une prise de courant avec prise de terre. Ne l'utilisez pas et ne le branchez pas au secteur C.A. sans utiliser de branchement mis à la terre.

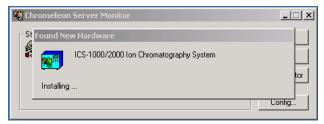
Le cordon d'alimentation principal est utilisé comme dispositif principal de débranchement. Veillez à ce que la prise de base soit située/installée près du module et facilement accessible.

STROMSCHLAGGEFAHR—Zur Vermeidung von elektrischen Schlägen ist eine geerdete Steckdose zu verwenden. Das Gerät darf nicht ohne Erdung betrieben bzw. an Wechselstrom angeschlossen werden.

Das Netzkabel ist das wichtigste Mittel zur Stromunterbrechung. Stellen Sie sicher, daß sich die Steckdose nahe am Gerät befindet und leicht zugänglich ist.

B.7 Turning On the ICS-1500 Power

IMPORTANT


Before turning on the ICS-1500 power, verify that Chromeleon software is installed. See <u>Section B.3</u> for installation instructions. If Chromeleon is not installed first, Windows will be unable to identify the new USB device.

- 1. If it is not already on, turn on the computer power and log onto Windows 2000 or Windows XP as an administrator.
- 2. Press the power switch on the ICS-1500 rear panel (see <u>Figure B-9</u>) to turn on the power.

Figure B-9. ICS-1500 Rear Panel

3. Windows automatically detects the new USB device. A message flashes on the screen to inform you that new hardware was found.

4. Go on to <u>Section B.8</u>.

B.8 Setting Up Chromeleon

NOTE This section provides brief instructions for setting up Chromeleon. For details about any of these steps, refer to the Chromeleon user's guide or online Help.

B.8.1 Assigning the ICS-1500 to a Timebase

- If the Chromeleon Server is not running (the icon on the taskbar is crossed out in red), start the Server by right-clicking the icon and selecting Start Server. When the server starts, the icon changes to gray .
- 2. Open the Server Configuration program (select Start>Programs>Chromeleon>Server Configuration).
- 3. The Unassigned USB Devices dialog box appears (see Figure B-10).

Unassigned Dionex IC USB Devices Detected The software has detected USB devices which are n to an existing Timebase, create a new Timebase for t postpone assigning the module.	■ ot assigned to a Timebase. You may add the devices hese devices, or simply press the "Cancel" button to
Server Name: AMAR	
Unassigned US <u>B</u> Devices ICS-1500:200011 Elash Module	Assign >> Assign >> Assign >> Dionex ASI-100 Autosampler Dionex PS80 Pump Dionex UVD340S PDA <
Launch Server Configuration on DK.	
ОК	Cancel

Figure B-10. ICS-1500 Unassigned to Timebase

- 4. Click the New button.
- 5. The Timebase box displays a default name (the Server Configuration name). You can use the provided name or type a new one (for example, **ICS-1500**).
- 6. Press the Enter key.
- In the Unassigned USB Devices box, select the ICS-1500 and then click the Assign button. The ICS-1500 is now assigned to the timebase (see Figure B-11). If you are installing more than one ICS-1500, you can verify the serial numbers for each by checking the label on the component panel. The serial number is also shown on the INFORMATION touch screen page.
- 8. Repeat <u>Step 7</u> if you are adding additional USB devices to this timebase.

Unassigned Dionex IC USB Devices Detected	X
The software has detected USB devices which are not assigned to to an existing Timebase, create a new Timebase for these devices, postpone assigning the module. Server Name: AMAR	
Unassigned USB Devices Assign >> Assign >> K <unassign< td=""> Eash Module Launch Server Configuration on DK.</unassign<>	Timebase

Figure B-11. ICS-1500 Assigned to a Timebase

- 9. Click **OK** to close the dialog box. The Server Configuration program window appears.
- 10. Click the + icon next to the server name to expand the folder. The timebase you created is displayed (see Figure B-12).

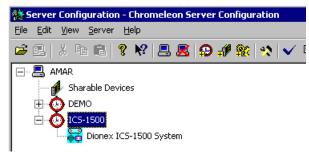


Figure B-12. Server Configuration with ICS-1500 Timebase

11. To verify that the ICS-1500 is correctly connected to the timebase, double-click its name under the timebase. Click **Yes** if the following message appears: "Communication to the device will be stopped...Do you want to continue?"

12. The ICS-1500 System dialog box opens (see Figure B-13). The General page shows the Device Name (Pump_ECD), the Mode (Live), and the Module Serial No.

Dionex ICS-1500 System
Error Levels Demo Chromatogram TTL Inputs Trend Calibration Diagnostics
General Options Signals Head Type & Limits Solvents State Devices
Device Name: Pump_ECD
Mode
© Live
Module Serial No: 200011
Moduleware version: 0. 3.27 Download
C Virtual
Use Live mode to control a physical module connected to the server. Virtual mode can be used to demonstrate the software support for the module and allows one to create methods and panels without having a physical module attached to the server.
OK Cancel Apply Help

Figure B-13. ICS-1500 System Properties

- 13. Close the dialog box and then save the configuration (select **File>Save Installation**).
- 14. If you are going to add one or more DX-LAN devices to the timebase, go on to <u>Section B.8.2</u>. Otherwise, exit the Server Configuration program and then go on to <u>Section B.9</u>.

B.8.2 Assigning DX-LAN Devices to the Timebase (Optional)

Follow the instructions in this section if you are adding one or more devices to the timebase that are connected to the PC through a DX-LAN interface (not through USB connections).

1. Follow the instructions in *Installing the Chromeleon IC System* (Document No. 031883) to add the DX-LAN card to the server configuration as a sharable device.

2. Select the timebase that was created for the ICS-1500 (see

Figure B-14); then, click the Add device icon **R** on the toolbar (or select Edit>Add Device).

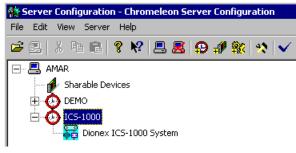


Figure B-14. Example: ICS-1500 Timebase

The Add device to timebase dialog box appears.

3. If it is not already selected, select **Dionex** under Manufacturers and then select the device from the Devices list.

🏶 Add device to timebase	×
Timebase Name: BioLC Manufacturers:	Devices:
ABI ABI Agilent Antec Berthold BIO-RAD CTC Dostmann Esa Fisons	AD20 Detector AD25 Detector AS50 Autosampler ASI-100 Autosampler CD20 Detector CD25 Detector CD25A Detector DX-120 System ED40 Conductivity Detector
	OK Cancel

Figure B-15. Add Device to Timebase Dialog Box

4. Click **OK**. A configuration properties dialog box for the device appears. <u>Figure B-16</u> shows an example of the properties for an AS50 Autosampler.

Dionex AS50 Autosampler	×
Error Levels Calibration Diagno General Options Temperature D	ostic evices
Device <u>N</u> ame: <mark>Sampler</mark>	
Demo <u>M</u> ode	
Communication	
Device ID:	
None	
Query for Device ID	
Device <u>S</u> erial No:	

Figure B-16. AS50 Configuration Properties

- On the General tab page, clear the Demo Mode check box if it is currently selected, and then select the DX-LAN Device ID number. Note: Devices display their DX-LAN ID numbers when their power is turned on.
- 6. Click **OK** to close the dialog box.
- 7. Save the configuration (select File>Save Installation).
- 8. Exit the Server Configuration program.
- 9. Go on to Section B.9

B.9 Installing and Plumbing the Columns and Suppressor

NOTE This section provides brief installation and plumbing instructions for the columns and suppressor. Before beginning the installation, refer to the column and suppressor manuals for detailed start-up and installation instructions. The manuals are provided on the Dionex Reference Library CD-ROM (P/N 053891), which is located in the ICS-1500 Ship Kit (P/N 057905).

Before beginning:

- Remove the guard column, separator column, and suppressor from their boxes.
- Remove the fitting plugs from the ends of each column and from all ports on the suppressor.
- Discard any tubing temporarily connecting the suppressor ports.

B.9.1 Column Heater Setup

- 1. Cut off the two shipping ties from the column heater and remove them (see <u>Figure B-17</u>).
- 2. Loosen the two thumbscrews on the heater cover (they remain attached to the cover).
- 3. Pull the heater cover straight out to remove it.

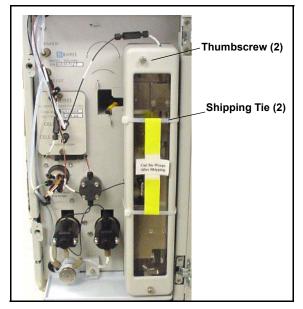


Figure B-17. ICS-1500 Column Heater Setup

- 4. Unscrew the six thumbscrews on the top metal plate (see <u>Figure B-18</u>) and remove the plate.
- 5. Go on to Section B.9.2.

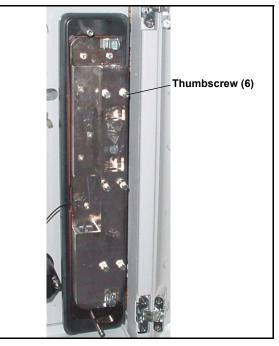


Figure B-18. ICS-1500 Column Heater Cover Removed

B.9.2 Installing the Columns

- 1. Remove the union connecting **GUARD IN** and **GUARD OUT**.
- 2. Connect **GUARD IN** to the guard column inlet. Check the arrow on the column label; it should point down (flow away from the injection valve).
- 3. Connect **GUARD OUT** to the guard column outlet.
- 4. Push the guard column onto the back column clip.
- 5. Remove the union connecting COL IN and COL OUT and
- 6. Connect **COL IN** to the separator column inlet. Connect **COL OUT** to the separator column outlet. Check the arrow on the column label. It should point up (flow toward the cell).
- 7. Push the separator column onto the front column clips.
- 8. Replace the top metal plate on the column heater.

B.9.3 Installing the Suppressor

- Locate the suppressor mounting tabs on the component panel (see <u>Figure B-19</u>). Reach into the opening between the tabs and pull the yellow connector and attached cable slightly out of the opening.
- 2. Connect this cable to the cable from the suppressor (align the pins on the two connectors and push them together).

Figure B-19. Suppressor Mounting Tabs and Guidelines

- 3. Orient the suppressor with the **REGEN OUT** fitting on top and the cable to the right.
- 4. Feed the cable into the opening in the component panel.
- 5. Align the top of the suppressor with the guideline printed on the component panel (see <u>Figure B-19</u>) and align the slots on the rear of the suppressor with the tabs on the panel.

- 6. Press the suppressor onto the tabs and then slide it down to lock it in place. Pull slightly on the center of the suppressor to verify that it is securely fastened. <u>Figure B-20</u> shows an SRS suppressor installed on the component panel.
- Remove the union connecting **ELUENT IN** and **ELUENT OUT** and connect these lines to the corresponding ports on the suppressor.

Figure B-20. Suppressor Installed (SRS Shown)

- 8. Remove the fitting plug from **REGEN IN** and connect it to the **REGEN IN** port on the suppressor. Connect the **TO SRS/AES REGEN OUT** line to the **REGEN OUT** port on the suppressor.
- 9. Replace the cover on the column heater, making sure the **GUARD IN** line is aligned with the slot on the side of the heater cover.
- 10. Go on to Section B.10.

B.10 Connecting the Waste Lines

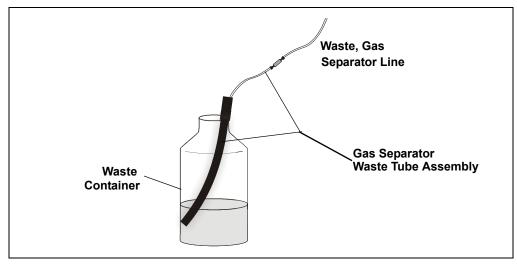
The ICS-1500 has the following waste lines:

- **PUMP WASTE** carries prime waste from the pump.
- **TO WASTE OUT** carries sample overflow from the injection valve.
- WASTE, GAS SEPARATOR carries system waste from the suppressor.

Untape the coiled waste lines from the rear panel. Place the ends of the **PUMP WASTE** and **TO WASTE OUT** lines into a waste container.

Direct the **WASTE**, **GAS SEPARATOR** line from the top of the ICS-1500 to the rear panel. Snap the line onto one of the tubing clips on the rear panel. Connect the line to the gas separator waste tube (see <u>Section B.10.1</u>).

NOTE To prevent waste from siphoning back into the system, check the lines periodically to be sure they are not bent, pinched, or elevated at any point.


B.10.1 Installing the Gas Separator Waste Tube

- Locate the gas separator waste tube assembly (see <u>Figure B-21</u>) in the ICS-1500 Ship Kit (P/N 057905).
- 2. Connect the **WASTE**, **GAS SEPARATOR** line to the 3-mm (1/8-in) ID white Teflon tubing on the gas separator waste tube assembly.

Figure B-21. Gas Separator Waste Tube Assembly

3. Place the gas separator waste tube assembly into the waste container. Make sure the tubing junction (where the white Teflon tubing meets the black polyethylene tubing) is above the top of the container and that the gas separator waste tube and the waste container are open to the atmosphere (see Figure B-22).

4. Go on to Section B.11.

Figure B-22. Gas Separator Waste Tube Installation

DO NOT CAP THE WASTE CONTAINER: The ICS-1500 uses an electrolytic process that results in the production of small amounts of oxygen or hydrogen gas. To ensure that the gas is not trapped in a closed container and allowed to concentrate, install a 1.3-cm (0.52-in) ID black gas separator waste tube (P/N 045460) in an uncapped waste container. Connect the Waste, Gas Separator line to the waste tube (see Figure B-22).

NE FERMEZ PAS LE CONTENEUR DE GAZ RÉSIDUEL L : Le ICS-1500 travaille avec un proces d'électrolyse, qui produit des petites quantités de gaz d'oxygène ou d'hydrogène. Afin de garantir que le gaz ne soit pas enfermé dans un conteneur fermé et puisse s'y concentrer, connectez un tube noir à gaz résiduel (diamètre intérieur = 1,3 cm; n° de commande 045460) à un conteneur ouvert (non fermé). Connectez le conteneur résiduel au tube résiduel/gaz séparateur (désigné: « Waste, Gas Separator»).

VERSCHLIESSEN SIE DEN ABFALLBEHÄLTER NICHT: Der ICS-1500 verwendet einen Elektrolyseprozess, wodurch kleine Mengen an Sauerstoff und Wasserstoff entstehen. Führen Sie einen schwarzen Gasabscheiderschlauch (ID = 1,3 cm; Bestell-Nr. 045460) in einen offenen (unverschlossenen) Abfallbehälter, damit sich das Gas nicht in einem geschlossenen Behälter sammelt und aufkonzentriert. Verbinden Sie die mit Waste, Gas Separator bezeichnete Leitung mit dem Abfallschlauch.

B.11 Setting Up the Eluent Reservoir

- 1. Rinse the eluent reservoir.
- Prepare the eluent as instructed in the manual for the column being installed. The column manual is included on the Dionex Reference Library CD-ROM (P/N 053891), located in the Ship Kit.
- 3. Fill the reservoir with the prepared eluent.
- 4. Place the reservoir on top of the ICS-1500.
- 5. Install the cap and hand tighten.
 - NOTE The ICS-1500 does not require pressurized reservoirs. However, if eluent is manually degassed or is sensitive to contamination, Dionex recommends pressurizing the reservoir with helium or nitrogen. See <u>Section B.20</u> for instructions.
- 6. Go on to Section B.12.

B.12 Setting Up a Chromeleon Application

Chromeleon provides application templates, which you can use to quickly get started running. To use the application templates, you need to know the type of column and suppressor you will be using. This section shows how to create a list of samples to be processed (a sequence) and how to use an application template.

- 1. Identify the type of column and suppressor installed in the ICS-1500.
- 2. Start Chromeleon (select **Start>Programs>Chromeleon>Chromeleon**). The Chromeleon main window and Browser appear (see Figure B-23).

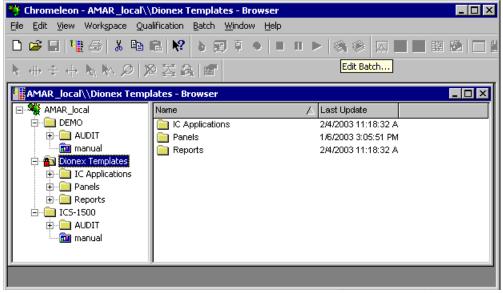


Figure B-23. Chromeleon Main Window and Browser

3. In the Browser, select **File>New** and select **Sequence (using Wizard)** (see Figure B-24).

lew	×
New	ОК
Control Panel	
Sequence (using Wizard) Sequence (from LIMS Worklist)	Cancel
Query (using Wizard)	
Program File	<u>H</u> elp
Method File	
Spectra Library	

Figure B-24. Creating a New Sequence

The Sequence Wizard Welcome page appears (see Figure B-25).

Chromeleon Sequence V	romeleon Sequence Wizard: Welcome	
Welcome to the	Sequence Wizard	
	This wizard helps you to create a sequence. It will guide you through the following steps:	
	o Choose a timebase o Specify standards and unknowns o Select method files o Store the sequence	
	To continue, click Next.	
	< Back Next > Cancel Help	

Figure B-25. Sequence Wizard Welcome Page

NOTE For details about a Sequence Wizard step, click the Help button on the Sequence Wizard page.

4. Click Next>.

The Sequence Wizard Timebase page appears (see Figure B-26).

Chromeleon Sequence Wizard - Step 1 of Choose a Timebase Select the timebase where the seque			X
Immediate ICS-1500 Computer: AMAR Protocol: My Computer Enter connection information manually or pick a timebase from the list at right.	My Computer DEMO ICS 1500 	orhood	
< <u>B</u> a	ick <u>N</u> ext >	Cancel	Help

Figure B-26. Example: Sequence Wizard Step 1

5. Select the ICS-1500 timebase and click Next>.

Use template	T Imp	orti	Sequence Previev	Rack P	Preview	
Template for Sam			Name		Pos.	Vol.
I Number of <u>V</u> ials:	0 [1x]	<u> </u>				
<u>I</u> njections per Vial: Start P <u>o</u> sition:	1 [199] 1 [1999					
Injection Vol <u>u</u> me:		00000.0 μl]				
	Apply >>					

The Unknown Samples page appears (see Figure B-27).

Figure B-27. Example: Sequence Wizard Step 2

- 6. Select Use Template from the drop-down list.
- 7. In the **Template for Sample Name field**, type **Sample**, click the right arrow, and select **Sample Number #n**.
- 8. In the Number of Vials field, type 1.
- 9. Use default settings for the remaining parameters on the page.
 - **NOTE** You can edit the sequence later, to add more samples and select the injection parameters appropriate for your application.

10. Click Apply.

Figure B-28 shows Sequence Wizard Step 2 after a sample is defined.

Use template	▼ Import	Sequence Preview	Rack Preview	
Tomolato for Samak		Name	Pos.	Vol.
Template for Sample Sample #n		👩 Sample 1	1	20.0
Number of <u>V</u> ials:	1 [1x]			
Injections per Vial:	1 [199]			
Start Position:	1 [199999]			
Injection Vol <u>u</u> me:	20.0 [0.1100000.0 μl]			
(
<u> </u>	pply >>	1		

Figure B-28. Example: Sequence Wizard Step 2 with Sample Defined

11. Click Next>.

Use template	T In	nport	Sequence Preview	Rack	Preview	
r Template for Samp	le Name:		Name		Pos.	Vol.
remplate for 3 amp	ie ni <u>e</u> me.	∓⊁	🗿 Sample 1		1	20.0
Number of <u>V</u> ials:	0 [1x					
Injections per Vial:	· · · · · · ·					
Start P <u>o</u> sition:	99 [19	9999]				
Injection Volume:	20.0 [0.1	.100000.0 μl]				
🗖 Vagiation:	1 Stan	dard(s)				
after each	1 Unkr	nown(s)				
ļ	Apply >>		<u> </u>			

The Standard Samples page appears (see Figure B-29).

Figure B-29. Example Sequence Wizard Step 3

12. Click **Next>** to omit this step and define standard injections later. Or, define one or more standard injections, and then click **Next>**.

The Methods & Reporting page appears

- 13. Select the Use Application Template check box.
- 14. From the drop-down lists, select the type of suppressor to be installed and then select the column.

In the example in <u>Figure B-30</u>, the 4-mm ASRS suppressor and AS17 column are selected.

Applications (includes me	ethod)		
Se Application Ten	nplate	Suppressor Type	ASRS_4mm
AS17 Production Test	Chromatogram	•	
Method Files			
Brogram:	AS17 Production Test Chro	omatogram 📃 💌	Browse
Quantification Method:	AS17 Production Test Chro	omatogram 📃 🔻	<u>B</u> rowse
The program and quantif	ication files will be imported (c	opied) into the new :	equence.
The pregram and quarter	ierenen meerinn ee mileensee (e		
Preferred Reporting Optic	ons		
			<u>B</u> rowse

Figure B-30. Example: Sequence Wizard Step 4

- 15. To select a report template, click the **Browse** button, go to the Dionex Templates/Reports folder, and select a template (for example, **default_letter**).
- 16. Click Next>.

The Saving the Sequence page appears.

17. Enter a name for the sequence and a location (see the example in Figure B-31).

Name & Title					
Remember to ente	r a new sequer	nce name, unle	ss you want to	overwrite an ol	d sequence.
Sequence Name:	Installation E	xample			•
Tjtle:					•
Location					
<u>D</u> atasource:	AMAR_local			•	
Directory:				•	<u>B</u> rowse

Figure B-31. Example: Sequence Wizard Step 5

18. Click **Next>** and then click **Done** on the last page of the Sequence Wizard.

The Browser appears, displaying the sequence you created (see <u>Figure B-32</u>). Notice the three files in the top pane of the Browser window.

AMAR_local\\Installation E	катр	le - Browser								_ 🗆	×
🖃 🦓 AMAR_local	Name	e			Δ	Titl	le		Timeb	ase	La
🗄 💼 DEMO	2	AS17 Production Test Chromatogram.pgm AS17 4mm Production Test Chromatogra ICS-1500								500	9/2
🕂 📲 Dionex Templates	K K	AS17 Production Test Chromatogram.qnt							7/2		
⊡ ICS-1500	14	CS-1500_System.pan 2								2/7	
Installation Example											
									►		
	No.	Name	Туре	Pos	Inj. V	/ol.	Program	Method	Status	Inj. Date	a
	1	🛜 Sample 1	Unknown	1	2	0.0	AS17 Produ	AS17 Produ	Single		
			•								
											Ţ
	ПП									Þ	C I

Figure B-32. Example Browser with Open Sequence

- The .pgm file (program) contains commands and parameters for controlling the ICS-1500, controlling the autosampler (if used), and acquiring sample data.
- The .qnt file (quantification method) contains peak identification and area determination parameters.
- The .pan file (Control Panel) lets you control and/or monitor the ICS-1500 and other modules that are connected to the timebase.
 - NOTE The sequence that you create here is intended as a starting point only. You can add additional samples to the sequence, change injection parameters, and edit the .pgm and .qnt files. Refer to the Chromeleon online Help for details. After completing the installation, see <u>Section 3.11</u> for how to process the samples and standards in the sequence.
- 19. Double-click the .pan file to open the Control Panel for your system (see the example in Figure B-33).

🏭 ICS-1500 System with Column Heater - IC	S-1500 - AMAR		_ 🗆 ×
ICS.1500 Pump Pump - On 800 psi Pump Settings	Sample Datasource: Sequence: Sample: Program: Elapsed Program Time:	System Log [Audit Trail] on ICS-1500 17:04:49 User (AMar) from AMAR has connected to timebase ICS-1500. 17:04:49 User (AMar) from AMAR has acquired control over timebase ICS-1500 ICS 4500 Surface).
	Total Program Time:	ICS-1500 System ✓ Connected Startup Shutdown S	Show Plot
Load Inject	10.0 # 0.096 8.0 - 6.0 - 4.0 -	fr	rom Pos. ECD_1
CCS-1500 Detector Suppressor - Off □ 0 mA Detector Settings	2.0- -1.0- 0.00 0.50 1.00	1.50 2.00 2.50	min 3.00

Figure B-33. ICS-1500 System Control Panel Example

NOTE If the Connected check box is not selected, click the box to connect the ICS-1500 to the Control Panel.

B.12.1 Verifying Chromeleon Communication

Verify that Chromeleon is communicating with the ICS-1500 by clicking the **Inject** and then the **Load** button on the Control Panel. If communication is occurring, you will hear the valve actuate as it changes position. Go on to <u>Section B.13</u>.

B.13 Setting the Eluent Level

After filling the reservoir, open the **HOME** page and enter the volume of liquid in the reservoir in the **Eluent Level** field (see <u>Figure B-34</u>), or enter the volume in the **Eluent Bottle** field on the Chromeleon Control Panel (see <u>Figure B-35</u>). The ICS-1500 determines the eluent usage, by monitoring the flow rate and the length of time the pump is on, and updates the field as the eluent is used up. A warning is displayed if the level falls below 200 mL. The warning is repeated at 100 mL and at 0 mL.

IMPORTANT

In order for the eluent level displayed on the screen to be accurate, the level must be entered by the user when the reservoir is filled. The ICS-1500 does not automatically detect when the reservoir is filled, nor when it is empty.

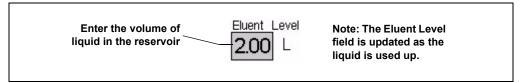


Figure B-34. Home Page: Setting the Eluent Level

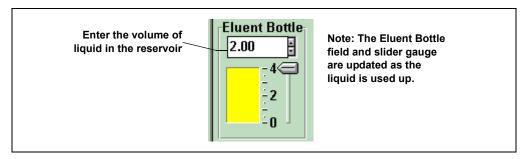


Figure B-35. Chromeleon Control Panel: Setting the Eluent Level

B.14 Priming the Pump

- 1. Verify that the eluent reservoir is filled, the reservoir cap is installed and hand tightened, and the liquid line from the ICS-1500 to the reservoir cap is connected (see Section B.11).
- 2. Verify that the waste lines are directed to a waste container.
- 3. The priming procedure consists of two parts:
 - Priming the eluent lines with a syringe. Perform this procedure at initial installation, after changing eluents, or when eluent lines are empty.
 - Priming the pump heads with the **Prime** button. Perform this procedure after the eluent lines are primed.

B.14.1 Priming the Eluent Lines with a Syringe

NOTE Prime the eluent lines after initial installation, after changing eluents, or when eluent lines are empty.

- 1. Verify that the pump is turned off.
- 2. Connect a 10 mL syringe (P/N 054578) to the port in the priming valve on the primary pump head (see Figure B-36).

Figure B-36. Priming the Eluent Lines

- 3. Open the priming valve by turning it one-quarter to one-half turn counterclockwise.
- 4. On the Chromeleon Control Panel, click **Pump Settings** and then click **Eluent Flow Valve Open** (see Figure B-37).

🎇 ICS-1500 System v	vith Column Heater - :	ICS-1500 - AMAF	۲		
ICS-1500 Pump	Pump - On	-Samula ICS-1500 Pump	Settings - ICS-15		ystem L 15:00:2
	800 psi	Pump Settings Flow Rate:	1.00 ml/min ÷		has co 15:00:2 has ac
	Pump Settings	Eluent Bottle	Off On	Prime	
ICS-1500 Injector		-4	Eluent Flow Valve	Open	S-1500 :
	LoadPosition	-3		open	7 Conne
	Load Inject	-2	Max. Pressure:	5000 psi	
€ [™] 1	Injector Settings		Curr. Pressure:	800 psi	
r CS-1500 Column Heate	er		Min. Pressure:	0 psi	
	Temperature:		Eluent Level:	0.00	
	35.0 °C			Close	
	Heater Settings				

Figure B-37. Chromeleon Control Panel: Pump Settings

5. Draw the syringe back to begin pulling eluent through the flow path. It may take several syringe draws to remove all air or previous eluent from the tubing.

NOTE If the vacuum degas assembly is installed, draw out an additional 20 mL of eluent.

- 6. After priming the lines thoroughly, close the priming valve. **Do not overtighten the priming valve.**
- 7. Close the eluent valve (click **Eluent Flow Valve Closed** on the Control Panel).

B.14.2 Priming with the Prime Button

- NOTE Perform this procedure after priming the eluent lines (see Section B.14.1).
- 1. Check that the priming valve on the primary pump head is closed (see Figure B-38).

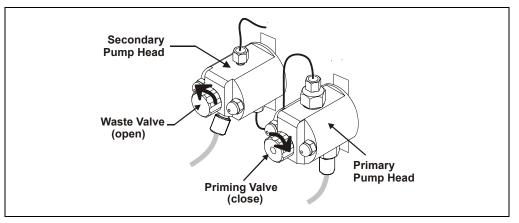


Figure B-38. Priming the Pump

- Open the waste valve on the secondary pump head by turning the knob one-quarter to one-half turn counterclockwise (see <u>Figure B-38</u>). Opening the valve directs the eluent flow path to waste and eliminates backpressure.
- 3. Click **Prime** on the Chromeleon Control Panel (see <u>Figure B-37</u>). The pump will begin pumping at approximately 3.0 mL/min.
- 4. Continue priming the ICS-1500 until no air bubbles are exiting the pump waste line.
- 5. Press Pump Off.
- 6. Close the waste valve. **Do not overtighten.** The pump is now ready for operation.
- **NOTE** If the two standard priming procedures described above are unsuccessful, prime the pump with isopropyl alcohol.See <u>Section 5.15</u> for instructions.

B.15 Equilibrating the System

- 1. After priming the pump, turn on the pump and set the flow to the operating rate.
- 2. Flush the system for about 5 minutes to equilibrate.
- 3. Monitor the system pressure from the Control Panel to make sure it is at the expected pressure for the installed column (refer to the column manual for details) and is stable. If the pressure is less than the expected amount, gas may be trapped in the system. Release the gas by removing the pump fitting on the injection valve. The fitting is labeled P (2). Allow the air to escape and then reconnect the fitting.
- 4. Check that liquid is flowing out of the suppressor **REGEN OUT** waste line and that the pressure is stable.
- 5. Monitor the baseline conductivity. In general, it should be $<30 \ \mu$ S for a system set up for anion analyses, and $<2 \ \mu$ S for a system set up for cation analyses. Equilibration time varies and it can take some time to reach these expected values.

B.16 Verifying Operational Status

After the system has equilibrated, verify the actual pump pressure and stability by monitoring the pump pressure reading on the Chromeleon Control Panel (or the touch screen **HOME** page). Write down the short-term pressure fluctuations; they should be less than 0.13 MPa (20 psi).

ICS-1500 installation is complete. For routine operation, refer to Chapter 3.

B.17 Connecting an AS50 Autosampler (Optional)

B.17.1 AS50 Configuration Requirements

To use an AS50 autosampler with the ICS-1500, the AS50 must meet the following requirements:

- An injection valve cannot be installed in the AS50
- The AS50 must have Moduleware version 1.11 or later installed
- Control of the ICS-1500 injection valve must be enabled in the AS50

The following AS50 models are configured at the factory to meet the above requirements:

- AS50 without injection valve (P/N 061309)
- AS50 without injection valve; with sample preparation (P/N 061310)
- AS50 without injection valve; with sample preparation and sample tray cooling (P/N 061311)
- AS50 without injection valve; with sample tray cooling (P/N 061312)

Notes

- To identify the version of Moduleware currently installed in the AS50, go to the AS50 **POWER UP** screen (press **Menu**, **8**, and **1**). If a Moduleware update is required, contact Dionex.
- In order to use an AS50 that has an injection valve installed, the valve must be disconnected from the AS50 electronics. Contact Dionex for assistance. The AS50 electronics components cannot be serviced by the user.
- If the AS50 is currently running with a Thermal Compartment (TC) or Chromatography Compartment (CC) and you are now going to use it with an ICS-1500, the injection valve is typically installed in the TC or CC, not in the AS50. If this is the case, verify that the correct Moduleware version is installed, and enable control of the ICS-1500 injection valve (see Section B.17.3).

After the AS50 is configured for use with the ICS-1500, all AS50 modes of injection (full-loop, partial-loop, and partial-loop limited-sample) are supported. In addition, all AS50 injection valve commands (whether

issued from the AS50 front panel or from Chromeleon) will control the ICS-1500 injection valve. For Chromeleon control, the AS50 must be added to the ICS-1500 timebase (see Section B.8). For front panel control, the AS50 and ICS-1500 can be set up for stand-alone operation. This requires a TTL cable connection between the AS50 and the ICS-1500. See Section D.3 for stand-alone setup instructions.

B.17.2 AS50 Connections

- 1. Place the AS50 to the left of the ICS-1500 on the workbench.
- 2. Open the ICS-1500 and AS50 doors.
- 3. The needle seal line that extends from the inject port in the autosampler is coiled inside the AS50 door, on the right side. Route this line through the AS50 right side slot (see Figure B-39) and the ICS-1500 left side slot to the ICS-1500 injection valve.

IMPORTANT

The needle seal line from the AS50 inject port to the ICS-1500 injection valve is calibrated for use with the ICS-1500. To ensure injection precision, do not shorten (by cutting) or lengthen this line, or replace it with a different (uncalibrated) line.

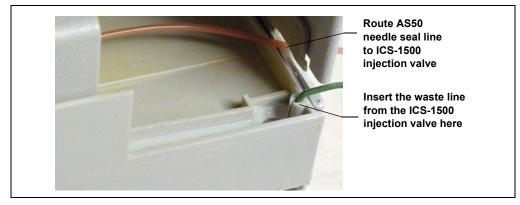


Figure B-39. AS50 Drip Tray

 Connect the needle seal line from the AS50 to port
 S (5) on the injection valve (see <u>Figure B-40</u>).

> The green waste line that is connected to port **W** (6) on the injection valve (see <u>Figure B-40</u>) is connected with a union to a Teflon waste line (see <u>Figure B-41</u>) and routed through the tubing chase to the ICS-1500 rear panel.

 Disconnect the green waste line (labeled AS50 TRAY) from the union and route the line to the drip tray in the autosampler compartment.

> You can either leave the disconnected Teflon waste line and union in the tubing chase, or pull the line out from the front.

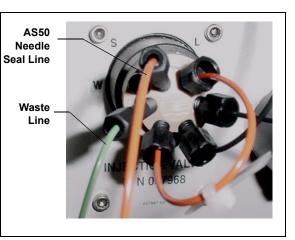


Figure B-40. ICS-1500 Injection Valve

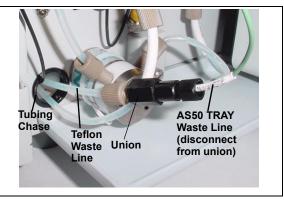


Figure B-41. Injection Valve Waste Line Union

6. Push the end of the green **AS50 TRAY** line into the small round opening on the right side of the AS50 tray (see Figure B-39).

IMPORTANT

Make sure the injection valve waste line is not elevated above the injection valve at any point between the valve and the AS50 drip tray.

- NOTE For PEEK waste lines, sharply bend the waste line tubing about 5-mm from the end to ensure it stays in place in the opening in the drip tray. When bending the tubing, be sure not to restrict the inner diameter.
- 7. If you have not already done so, add the AS50 to the Chromeleon timebase (see <u>Section B.8</u>).

B.17.3 Enable AS50 Control of the Injection Valve

Follow the steps below if you are connecting an AS50 that was not configured at the factory for ICS-1500 support. Injection valve control is already enabled in pre-configured AS50 models (see the list in <u>Section B.17.1</u>).

 On the AS50 front panel, press Menu and 0 to go to the TIME FUNCTION OUT screen (see Figure B-42). In the LOAD/INECT VALVE: TTL 1 field, select ENABLED.

TIME FUNCTION OUT				
LOAD/INJECT VALVE: LOAD/INJECT VALVE:		ENABLED DISABLED		
Help Prompt				

Figure B-42. AS50 Time Function Out Screen

2. Turn the AS50 power off and then back on.

All AS50 injection valve commands (whether issued from the AS50 front panel or from Chromeleon) will now control the ICS-1500 injection valve.

B.18 Connecting an AS40 Automated Sampler (Optional)

- 1. Place the AS40 to the left of the ICS-1500 on the workbench.
- 2. Open the front door of the ICS-1500 and thread the outlet line from the AS40 through the left side slot at the front of the ICS-1500.
- Connect the outlet line from the AS40 to port
 S (5) of the injection valve (see Figure B-43).

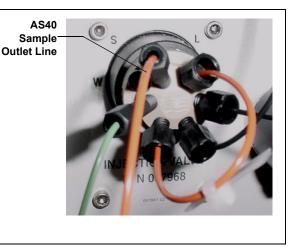


Figure B-43. ICS-1500 Injection Valve

- 4. Locate the relay control cable (P/N 047946) supplied with the AS40.
- 5. Remove the 2-position connector plug from the pair of wires labeled **LOAD** on the relay control cable.
- 6. Locate the 12-position connector plug (P/N 923686) in the ICS-1500 Ship Kit (P/N 057905) (see Figure B-44).
- Attach the red wire from the relay control cable to position 1 on the plug, and attach the green wire to position 2. This will be used to connect the AS40 LOAD relay to RELAY OUT 1 on the ICS-1500.



Figure B-44. 12-Position Connector Plug

To attach a wire to the plug, strip the end of the wire, insert it into the plug, and use a screwdriver to tighten the locking screw.

When attaching wires to the connector plug, be careful not to allow stray strands of wire to short to the adjoining position on the connector.

- NOTE If RELAY OUT 1 is not available, you can connect to RELAY OUT 2 or to one of the TTL outputs. For RELAY OUT 2, connect the red wire to position 3 and the green wire to position 4. For TTL OUT 1, connect the red wire to position 5 and the green wire to position 11. For TTL OUT 2, connect the red wire to position 6 and the green wire to position 12.
- 8. Connect the relay control cable's 10-position connector plug to the **RELAY CONTROL** connector on the AS40 rear panel (see Figure B-45).
- Plug the 12-position connector plug into the TTL and relay connector on the ICS-1500 rear panel (see <u>Figure B-45</u>). Make sure the red wire connects to position 1 and the green wire connects to position 2.

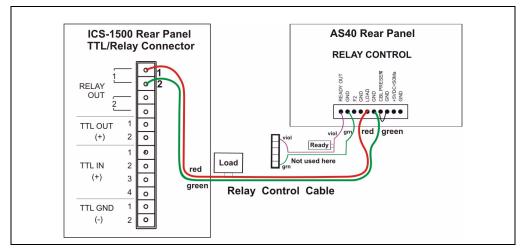


Figure B-45. Example AS40 Autosampler Connection

The AS40 Load relay is now dedicated to the ICS-1500 **RELAY OUT 1**. Use this relay for running with Chromeleon. When you set up the ICS-1500 application (see <u>Section B.12</u>), commands for controlling the AS40 Load relay and switching the ICS-1500 injection valve are included by default in the program file (see <u>Figure B-46</u>).

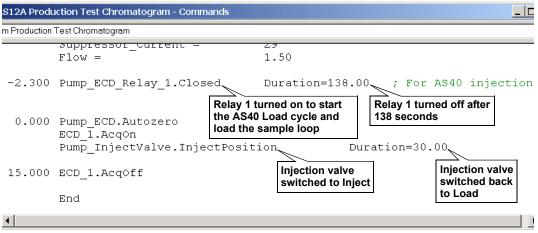


Figure B-46. Example Program for AS40 Control

B.19 Analog Output Connection (Optional)

The analog output connector on the ICS-1500 rear panel outputs an analog voltage signal proportional to the conductivity measured by the cell. The output is filtered using the selected data rise time (see Section C.9.1). The analog output can be connected to an analog-to-digital converter such as an integrator or other recording device. Refer to the documentation for the device for connection instructions.

Analog output is 0 to 1V, scaled to the selected range (see Section C.9.3).

For an example setup for ICS-1500 stand-alone operation with an AS50 autosampler, see <u>Section D.3</u>.

B.20 Pressurizing the Eluent Reservoir (Optional)

The ICS-1500 does not require pressurized reservoirs. However, if eluent is manually degassed or is sensitive to contamination, Dionex recommends pressurizing the reservoir with helium or nitrogen. The air regulator accessory bracket and other items needed for pressurizing the eluent reservoir must be ordered separately (P/N 060054).

B.20.1 Connecting the Gas Source (Optional)

- 1. Locate the barbed fitting (P/N 030071), pipe thread reducer (P/N 030087), 3-mm (1/8-in) ID tubing (P/N 040793), and ICS-1500 air regulator accessory (P/N 060054). These parts must be ordered separately.
- 2. Use the barbed fitting and pipe thread reducer to connect the 3-mm (1/8-in) ID tubing to a clean gas source, regulated to between 0.55 and 0.83 MPa (80 and 120 psi).
- 3. Push the other end of the tubing onto the inlet of the air regulator (see Figure B-47).
- 4. Remove the eluent reservoir cap.
- 5. Connect the gas line from the eluent reservoir cap to the gas line on the air regulator outlet.
- 6. Slip the air regulator accessory bracket over the neck of the eluent reservoir (see Figure B-47).

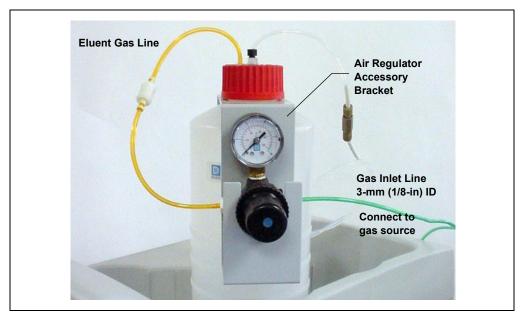


Figure B-47. ICS-1500 Pressurized Eluent Reservoir Connections (Optional)

B.20.2 Pressurizing the Eluent Reservoir (Optional)

NOTE Do not pressurize the ICS-1500 until after the reservoir is plumbed.

- 1. Pull out the air regulator knob and turn it fully counterclockwise to ensure there is no pressure to the reservoir when the gas source is turned on.
- 2. Turn on the gas source.
- 3. Pull out the air regulator knob and turn it clockwise to pressurize the eluent reservoir.
- 4. Adjust the pressure to between 30 and 40 kPa (5 and 6 psi). Push the regulator knob back in.

Do not pressurize the eluent reservoir above 70 kPa (10 psi).

Ne mettez jamais les réservoirs d'éluants sous une pression supérieure à 0,07 MPa (10 lb/po²).

Setzen Sie den Eluentbehälter auf keinen Fall einem Druck über 0,07 MPa aus.

B.21 Pump Continuous Seal Wash Connections (Optional)

The pump includes a seal wash assembly that can be set up to continuously rinse the back of the piston seals to remove salt crystals and prolong the life of the seals. Follow the steps below to set up this feature.

- 1. Fill a flush bottle with either deionized water or a combination of deionized water and 10% or 20% isopropyl alcohol. (Isopropyl alcohol will inhibit bacterial growth in the water.)
- 2. Place the flush bottle on top of the ICS-1500. During operation, gravity maintains flow through the pump heads.
- 3. The flush solution is carried to the piston seal wash assembly and out to waste via 1.5-mm (0.06-in) ID tubing (P/N 055847). Locate this tubing in the ICS-1500 Ship Kit and cut the tubing into three unequal pieces in the following lengths:
 - 117 cm (46 in)
 - 152 cm (60 in)
 - 15 cm (6 in)
- 4. Install the tubing as follows (see Figure B-48 and Figure B-49):
 - a. Push the 117-cm (46-in) piece of clear tubing onto the drain tube on the bottom of the *secondary* pump head. Place the free end of this tubing in the flush bottle. Make sure the end of the tubing is near the bottom of the bottle.

Figure B-48. Primary and Secondary Pump Heads with Drain Tubes

- b. Push the 152-cm (60-in) piece of clear tubing onto the drain tube on the top of the *primary* pump head. This is the waste line. Route this waste line through the lower tubing chase and out the back of the ICS-1500.
- c. Push the 15-cm (6-in) piece of clear tubing over the drain tube on the top the *secondary* pump head. Push the other end of the tubing over the drain tube on the bottom of the *primary* pump head.
- d. Place a 10 mL syringe (P/N 054578) at the end of the waste line, press the syringe against the line to form a seal, and draw out all of the air.
- e. Push approximately 5 cm (2 in) of black 0.25-mm (0.01-in) ID tubing (P/N 057057) into the end of the waste line.
 - NOTE The black tubing creates a flow restriction. Assuming a height difference of about 76 cm (30 in) between the flush bottle and the waste container, this setup provides a flow of one drop of flush solution every 5 to 30 seconds.
- f. Place the end of the waste line in a waste container.
- g. This completes the piston seal wash installation. Periodically refill the flush bottle and empty the waste container as required.

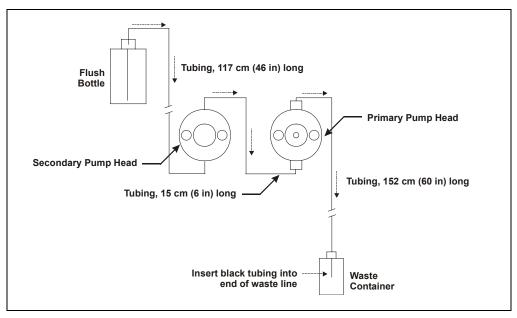


Figure B-49. Piston Seal Wash Flow Schematic

B.22 Manually Connecting to a Control Panel

This section describes how to manually connect the ICS-1500 to a Control Panel if you do not use the application templates described in <u>Section B.12</u>.

- 1. In the Browser, expand the **Dionex Templates\Panels\Dionex_IC\ICS-1500** folder. Several System Control Panels, corresponding to various system configurations, are provided.
- Open the panel for your system configuration by double-clicking its name in the list. For example, if your system includes an ICS-1500 and an AS50 autosampler, double-click either ICS-1500_System_AS50.pan or ICS-1500_Traditional_System_AS50.pan.
 - NOTE The two types of panels (system and traditional system) are similar in function, but have different "looks." You can select either style, depending on your personal preference.

When the Control Panel opens, the controls on the panel are not enabled (see Figure B-50).

•	Pump and	Detector										×
	Sample——					Audit Tra	il					÷.,
	Datasource:	(\$1}		Elapsed Time:	rstem.Retentic							
	Sequence:	(\$1}		Run Time:	ystem.PgmEn							
	Sample:	(\$1)		System	1							
	Program:	(\$1}		Startup	Shutdown						-	1
5	Pumn ECD	DeviceType} Pump	JPumn FCD De	viceTyne3 Det	ector	,						
	Eluent Bottl	e 🗖 Connected	Connected	Connected	Signal:)_1.Signal	.Value Supp. Typ	e:	-	Cell Temp:	-	
	<u>-</u>	Connected	Autozero	Ready	Data Rate:		SRS Current:		SRS Mode		Show Plot	
	<u>-</u> 100				Sample.Numb						os. {Position}	
	50	Hold Mode	10.0 {Sample	.Sequence} #	Sample.Nump	ei}	{Sample.Name}		{voiu	me;a} nom P	JS. {POSICION}	
	50	Stop Mode										
	÷ (mp {PumpMo	8.0-									
	Pressure:	ressure.Value;	6.0-									
	Flow Rate:											
	Off	On Prime	4.0-									
	Inject Valve											
	<mark>{Pump_Inj</mark>	ectValve.State}	2.0-									
	Inject	Load										
	Eluent Flow	Valve										
		entValve}	-1.0								min	
	Closed	Open	0.00	0.50 1	.00 1.50	2.00	2.50	3.00	3.50	4.00 4	1.50 5.00	
			J									

Figure B-50. ICS-1500 Traditional System Control Panel (Unconnected)

3. To connect the Control Panel to the ICS-1500, open the **Control** menu and click the name of the ICS-1500 timebase at the bottom of the menu.

The Control Panel is now connected to the ICS-1500 and the controls are enabled (see Figure B-51).

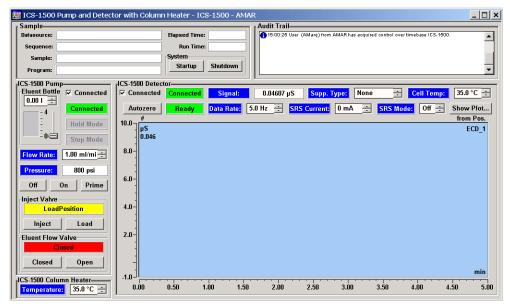


Figure B-51. ICS-1500 Traditional System Control Panel (Connected to the ICS-1500)

B.23 Installation Troubleshooting

Problem: When the ICS-1500 power is turned on for the first time, a Windows message box appears asking for a USB configuration file (cmwdmusb.inf).

Possible Cause: The USB cable was connected and the power turned on before Chromeleon was installed.

Solutions:

Use one of the methods below to resolve the problem:

- Click the **Cancel** button on the Windows message box. Turn off the ICS-1500 power and unplug the USB cable. Then, install Chromeleon, reconnect the USB cable and turn on the ICS-1500 power. Windows will now automatically recognize the new USB device.
- Leave the message box open and insert the Chromeleon CD into the CD-ROM drive. Click the **Browse** button on the message dialog box. The cmwdmusb.inf file is located in the **Drivers** folder on the CD.

The LCD touch screen on the ICS-1500 front panel allows local control of most ICS-1500 functions. This chapter describes how to operate the ICS-1500 from the touch screen.

When the ICS-1500 starts up, the touch screen displays a startup page. This is followed by the **INFORMATION** page, which displays version and serial numbers and a list of installed options. After a few seconds, the **HOME** page (see <u>Figure C-1</u>) is displayed. The **HOME** page provides controls for all normal, daily operation of the ICS-1500.

C.1 Using the Touch Screen

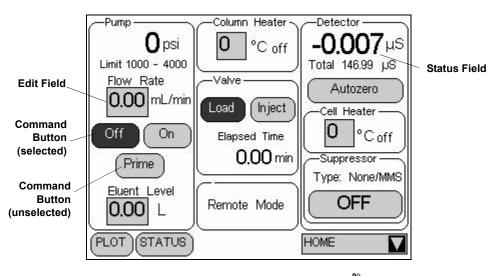


Figure C-1. ICS-1500 Touch Screen Home 🟠 Page

NOTE To adjust the screen contrast, open the front door and adjust the knurled knob under the screen (see Figure 2-8).

- Edit fields and command buttons have blue text on a lightly shaded background. Fields that display status information are not shaded.
- Edit fields have square corners and command buttons are rounded.
- To edit a field or select a command button, touch and release the field or button with your fingertip.
 - NOTE When you touch a button or edit field, the action takes effect when you lift your finger. If you unintentionally touch a button or field, slide your finger away from the button or field before lifting, to cancel the action.
- Touching a command button (for example, <u>[Inject]</u>) executes the command immediately.
- When a command button is selected, it changes to white text on a dark background (for example, nject).
- Touching an edit field (for example, 0.00 mL/min) opens a page with a number keypad (see Figure C-2). Use the keypad to enter the desired numerical value for the field and then touch the ENTER button.

Flow Rate

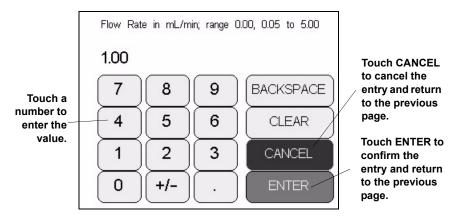


Figure C-2. Number Keypad

• Touching the page name (for example, HOME) on the bottom right corner opens a menu of pages (see Figure C-3).

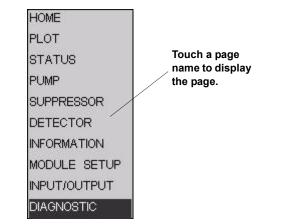


Figure C-3. ICS-1500 Touch Screen Menu of Pages

 Touching a page name on the menu of pages displays the selected page. For example, touching SUPPRESSOR displays the SUPPRESSOR page (see Figure C-4).

Figure C-4. Suppressor Page

• Touching 🛱 returns you to the **HOME** page.

• Touching volume opens a list of options from which to choose (see Figure C-5).

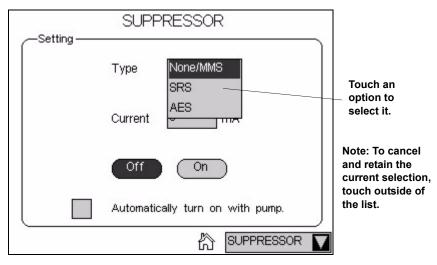


Figure C-5. Suppressor Page: Selecting an Option

C.2 Using the Touch Screen with Chromeleon

Remote Mode When the ICS-1500 is connected to a Chromeleon Control Panel, the status field at the bottom center of the **HOME** page displays **Remote Mode**. In this mode, most of the controls on the touch screen pages are disabled. This prevents touch screen commands from conflicting with Chromeleon commands.

In general, when the ICS-1500 is connected to Chromeleon, you can:

- View all ICS-1500 operational status information (pressure, flow rate, conductivity readings, etc.)
- Go to any of the touch screen pages
- View a plot of the conductivity data from the **PLOT** page. Controls for adjusting the plot display are available. See <u>Section C.5</u> for details.

To restore touch screen (local) control, clear the **Connected** check box on the Chromeleon Control Panel.

C.3 Overview of ICS-1500 Touch Screen Pages

Figure C-6 illustrates the organization of the ICS-1500 touch screen pages.

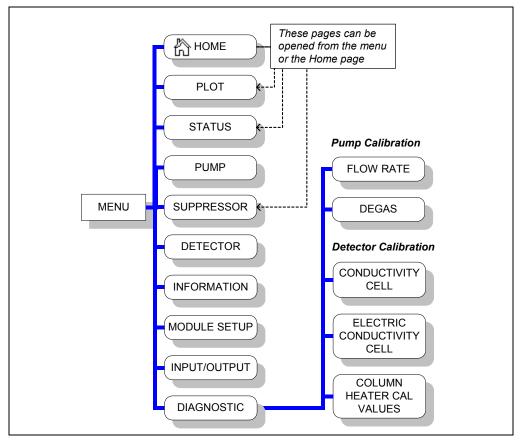


Figure C-6. Overview of ICS-1500 Touch Screen Pages

C.4 Home Page

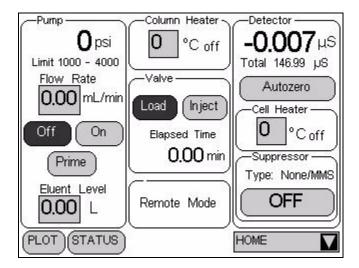
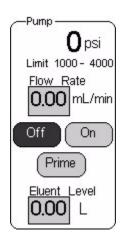



Figure C-7. ICS-1500 Touch Screen Home 🟠 Page

C.4.1 Home Page Pump Controls

Pressure Display

The **HOME** page indicates the current pressure reading from the pressure transducer. The pressure unit can be set to psi (the factory default), MPa, or bar (see Section C.7.1).

The minimum and maximum pressure limits are displayed below the current pressure reading. If the pressure reading goes outside these limits, the pump is stopped and an error message appears in the Chromeleon Audit Trail and on the touch screen. See <u>Section 4.1</u> for troubleshooting information. See <u>Section C.7.1</u> for how to set the pressure limits.

Flow Rate

The flow rate can be set to 0.00 (which turns off the pump) and to between 0.05 and 5.0 mL/min. The recommended operating flow rate is between 0.4 and

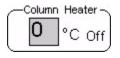
2.0 mL/min. Refer to the column manual for the flow rate to use with your column and application. Column manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

Pump On/Off Control

Touching the **On** button immediately starts the pump flow at the rate displayed in the **Flow Rate** field. Touching **Off** stops the flow.

Prime

The **Prime** button is reserved for use during the pump head priming procedure. Touching the **Prime** button displays a confirmation page that reminds you to open the waste valve. Open the valve, and then touch the **OK** button to begin priming. Or, to exit the page without priming, touch the **Cancel** button. To stop priming, touch the **Off** button. During priming, the flow rate is approximately 3.0 mL/min. See <u>Section B.12</u> for detailed priming instructions.

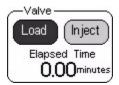

Eluent Level

Use this field to monitor the amount of liquid in the eluent reservoir. When you fill the reservoir, enter the amount of liquid in the reservoir. For example, if the reservoir contains 200 mL and you add 1 liter, enter 1.2 liters. Thereafter, the ICS-1500 determines the eluent usage by monitoring the flow rate and the length of time the pump is on. The ICS-1500 updates the **Eluent Level** field as the eluent is used up. A warning first appears if the level falls below 200 mL. Warnings are repeated at 100 mL and 0 mL.

IMPORTANT

In order for the eluent level displayed on the screen to be accurate, the level must be entered by the user when the reservoir is filled. The ICS-1500 does not automatically detect when the reservoir is filled, nor when it is empty.

C.4.2 Home Page Column Heater



The temperature of the column heater can be controlled to between 30 °C and 60 °C. For optimal performance, set the column heater to at least 5 °C above the ambient temperature. To set the temperature, touch the **Column**

Heater field and enter the desired temperature on the number pad. To turn the column heater off, set the temperature to 0. The display to the right of the temperature setting indicates the heater status:

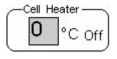
- = column temperature is at equilibrium
- ↑ column temperature is rising
- \downarrow column temperature is falling
- Off column heater is off

C.4.3 Home Page Injection Valve Controls

The **Inject** and **Load** buttons select the position of the injection valve. The current valve position is indicated with a dark background and white text. For details about the valve positions, see <u>Section 2.4.4</u>.

The **ELAPSED TIME** field displays the amount of time since the last injection.

C.4.4 Home Page Detector Controls


Conductivity Readings

The offset conductivity is displayed in large numbers above the total conductivity. The offset conductivity is the total conductivity minus the current offset.

To determine the offset, allow the system to equilibrate after startup. At equilibration, the conductivity reading is the background conductivity (the eluent conductivity before sample injection). Touch **Autozero** to zero the conductivity and offset this background reading from the total reading.

NOTE You can reverse the conductivity display to show the total conductivity in large type, with the offset conductivity below it in small type. Select this option on the MODULE SETUP page (see Section C.11).

Cell Heater Controls

The temperature of the cell can be set to between 30 °C and 55 °C, but must be at least 7 °C above the ambient temperature. To set the temperature, touch the **Cell Heater** field and enter the desired temperature on the number pad.

To turn off the cell heater, set the temperature to 0. The display to the right of the temperature setting indicates the heater status:

- = cell temperature is at equilibrium
- ↑ cell temperature is rising
- \downarrow cell temperature is falling
- Off cell heater is off

Suppressor Controls

-Suppressor	
300	Ŋ

The **Suppressor** controls indicate the suppressor current setting and the type of suppressor installed.

To set the suppressor type, change the current setting, or turn the suppressor on or off, touch the suppressor button.

The SUPPRESSOR page appears (see Section C.8).

C.4.5 Other Home Page Controls

Remote	Mode
rtornoto	Mode

This field displays **Remote Mode** when the ICS-1500 is connected to Chromeleon and **Local Mode** when the system is not connected to Chromeleon.

Opens the **PLOT** page, which provides a real-time plot of the detector conductivity output. See Section C.5 for details.

Opens the **STATUS** page, which displays the status of various operating parameters. See Section C.6 for details.

C.5 Plot Page

The **PLOT** page provides a real-time plot of the detector conductivity output. To open the page, touch the **PLOT** button on the **HOME** page, or select **PLOT** from the menu of pages. The page can display up to 60 minutes of data. Data older than 60 minutes is discarded. You can view the plot and adjust the display when the ICS-1500 is under either local or computer control.

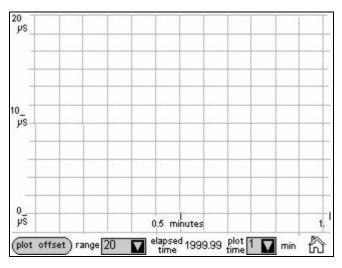


Figure C-8. Plot Page

Plot Controls

- The **plot offset** button offsets the current background conductivity reading and sets the plot baseline to zero. Subsequent output is plotted in relation to the new zero point. Offsetting the plot does not affect the data sent to Chromeleon, the analog output, or the data displayed on other pages.
- The **range** field sets the highest conductivity reading displayed on the plot (the vertical scale). If the tops of peaks are cut off, select a higher range. If peaks are short, select a lower range.
- The elapsed time field displays the time since injection.
- The **plot time** field sets the length of time plotted on the page (the horizontal scale).

C.6 Status Page

The **STATUS** page displays the current status of various operating parameters. To open this page, touch the **STATUS** button on the **HOME** page or select **STATUS** from the menu of pages.

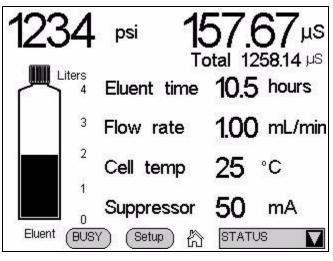


Figure C-9. Status Page

Status Page Controls

- Pressure and conductivity readings are the same as those displayed on the **HOME** page.
- The eluent bottle depicts the level of liquid in the eluent reservoir. The scale is always 0 to 4 liters (regardless of the size of reservoir installed). After filling the reservoir, go to the **HOME** page and enter the amount of liquid in the reservoir (see Section C.4.1). The ICS-1500 monitors the eluent usage, based on the flow rate and the length of time the pump is on. The "liquid" level in the bottle falls as the reservoir empties. An error message is first displayed on the screen when the level falls below 200 mL. The message is repeated at 100 mL and then at 0 mL.

IMPORTANT

In order for the eluent level displayed on the screen to be accurate, the level must be entered by the user when the reservoir is filled. The ICS-1500 does not automatically detect when the reservoir is filled, nor when it is empty.

- The fields to the right of the bottle display the status of four other operating parameters. You can choose from six possible parameters to display here.
 <u>Figure C-9</u> shows the default parameters: **Eluent time**, **Flow rate**, **Cell temp**, and **Suppressor**. To select different parameters, touch the **Setup** button. See Section C.6.1 for details about how to change the status parameters, and <u>Section C.6.2</u> for a description of each parameter.
- Touching the **Busy** button displays the **BUSY** page (see Figure C-10).

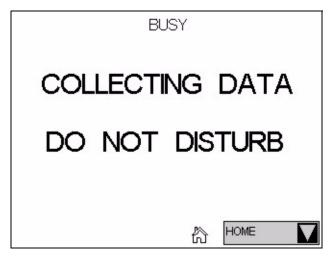


Figure C-10. Busy Page

C.6.1 Viewing Other Status Parameters

Follow the steps below to view the status of a parameter that is not currently displayed on the **STATUS** page.

1. Touch the **Setup** button. A drop-down list replaces the label for each field, and the **Setup** button changes to **Apply** (see Figure C-11).

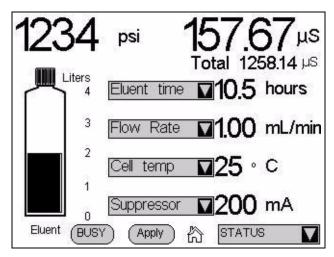


Figure C-11. Status Page Setup

2. Touch the down arrow next to the field you want to change. A list of the available status parameters appears (see Figure C-12).

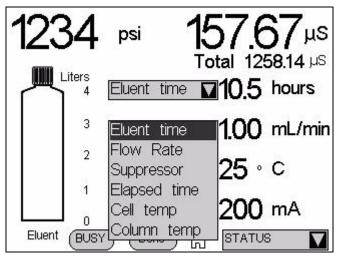


Figure C-12. Status Page Parameter List

- 3. Touch the parameter you want to display.
- 4. When finished, touch the **Apply** button.

C.6.2 Status Parameter Details

Status Parameter	Description
Eluent time	The number of hours the eluent will last, if the pump runs continuously at the current flow rate.
Flow rate	The actual flow rate currently output by the pump.
Suppressor	The actual current applied to the suppressor.
Elapsed time	The number of hours since the last injection.
Cell temp	The temperature of the cell heater (°C), followed by a status symbol (=, \uparrow , or \downarrow).
Column temp	The temperature of the column heater (°C), followed by a status symbol (=, \uparrow , or \downarrow).

C.7 Pump Page

Use the **PUMP** page to set parameters related to pump operation, including pressure limits, pressure unit, vacuum degas pump settings, and eluent valve control. To open this page, select **PUMP** from the menu of pages. The current system pressure is displayed at the top of the screen.

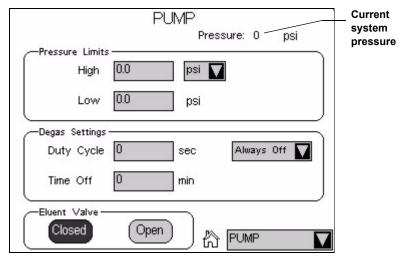


Figure C-13. ICS-1500 Touch Screen Pump Page

C.7.1 Setting Pump Pressure Limits and Selecting the Pressure Unit

The first time the power to the ICS-1500 is turned on, the maximum system pressure limit is 34.5 MPa (5000 psi) and the minimum pressure limit is 0.

- NOTE Pump pressure limits can also be changed in Chromeleon (in the Server Configuration program or in the control program).
- To change the high pressure limit, touch the **HIGH** field and enter the desired limit on the number pad. The high limit must be at least 0.7 MPa (100 psi) above the low limit.
- To change the low pressure limit, touch the **LOW** field and enter the desired limit on the number pad.

To select the pressure unit for all touch screen pages that display pressure values, touch the pressure unit field and select the desired unit on the list (**PSI**, **bar**, or **MPa**) (see Figure C-14).

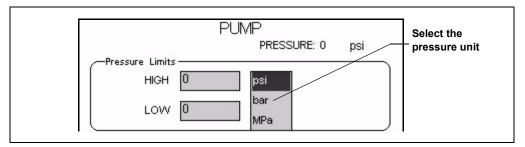


Figure C-14. Pump Page: Selecting the Pressure Unit

C.7.2 Setting Degas Operating Parameters (Optional)

By default, the ICS-1500 monitors the degas pressure reading and turns the degas pump on and off as required. To change the degas operating option:

- 1. Select **PUMP** from the menu of pages.
- 2. Under **Degas Settings**, touch the options drop-down list. A list of available options appears (see Figure C-15).

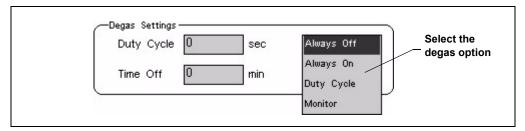


Figure C-15. Pump Page: Selecting Degas Options

NOTE Degas options can also be selected from the Chromeleon Server Configuration program (see <u>Section 2.4.1</u>).

3. Select the desired option:

Always Off: The degas pump is always off.

Always On: The degas pump is always on. This setting is reserved for test purposes by a Dionex Service Representative.

IMPORTANT

Select the Degas Mode, Always On option only when testing the vacuum degas assembly. Do not select the Always On option for routine use.

Duty Cycle: The degas pump cycles on and off according to the times specified in the **Duty Cycle** and **Time Off** fields. **Duty Cycle** specifies for how long the degas pump runs during a cycle; **Time Off** specifies the time between cycles.

Monitor: The ICS-1500 monitors the degas pressure reading and turns the degas pump on and off as required.

C.7.3 Controlling the Eluent Valve

The eluent valve controls flow from the eluent reservoir. During routine operation, the valve opens and closes automatically

when the pump flow is turned on and off. However, during eluent line priming, you can use the controls on the **PUMP** page to manually open the valve, allowing liquid to flow through the lines when the pump is off. See Section B.14.1 for eluent line priming instructions.

C.8 Suppressor Page

Use the **SUPPRESSOR** page to specify the type of suppressor installed in the ICS-1500, turn the suppressor on and off, and select the amount of current supplied to the suppressor. To open this page, touch the suppressor button on the **HOME** page, or select **SUPPRESSOR** from the menu of pages.

-Setting	SUPPRESSOR
Setting	Type None/MMS
	Current 0 mA
	Off On
	Automatically turn on with pump.

Figure C-16. Suppressor Page

Suppressor Controls

- The suppressor type is typically selected at initial installation and does not need to be changed. However, if a different type of suppressor is installed later (or if the suppressor is removed from the system), touch the **Type** field and select the new suppressor type (**None/MMS**, **SRS**, or **AES**) from the list.
- To set the current, touch the **Current** field and enter the desired setting (in milliamperes) on the number pad.

The suppressor current setting to use depends on several variables: the suppressor type, the column, the eluent, and the flow rate. Refer to the suppressor manual for the recommended current setting for your application. The suppressor manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

- NOTE If Chromeleon is used to control the ICS-1500, the Program Wizard will automatically calculate the current required for the application.
- To manually control the suppressor power, touch the **Off** and **On** buttons.
- To automatically control the suppressor power simultaneously with the pump flow, select **Automatically turn on with pump**.

NOTE The suppressor always turns off when the pump is off, regardless of whether the "Automatically turn on with pump" option is selected.

C.9 Detector Page

Use the **DETECTOR** page to set the data rise time and to select parameters for adjusting the analog output. To open this page, select **DETECTOR** from the menu of pages.

DE	TECTOR
Data Rise Time	2.00 🔽 sec
Conductivity Polarity	Normal
Analog Out	
Output	Normal
% Offset	0
Polarity	+
Range	100 💟 µS

Figure C-17. Detector Page

C.9.1 Setting the Data Rise Time

The data rise time determines the amount of filtering performed on the conductivity data. The rise time is a measure of how quickly the detector

responds to a change in signal, and is defined as the time it takes the output signal to rise from 10% of its final value to 90% of its final value.

The selected data rise time is used to filter both the digital data output, which is sent to the computer and the **PLOT** page, and the analog data output. The default rise time is 2 seconds.

Choosing an appropriate rise time value can optimize performance by keeping the signal-to-noise ratio at a minimum level. A longer rise time allows averaging of the noise frequencies, and subsequently, the baseline will contain much less short-term noise. However, longer rise times may have the following effects on peaks:

- Peak shape will become asymmetric.
- The peak maximum will be shifted.
- The peak height will be reduced.

The rise time should be approximately 25% of the peak width at one-half the height of the narrowest peak of interest.

For example, for a peak width of 5 seconds, calculate the rise time as: (5 sec) 25% = 1.25 sec. Because 1.25 seconds is not one of the available settings for rise time, select the next fastest rise time, 1 second.

To set the data rise time, touch the **Data Rise Time** field and select the desired time from the list (see Figure C-17).

C.9.2 Selecting the Conductivity Polarity

To change the polarity of the conductivity data, touch the **Conductivity Polarity** field. Select either **Normal** or **Inverted**. In applications in which the analyte output is lower than the background conductance, the polarity must be inverted to have peaks instead of dips on the chromatogram.

C.9.3 Setting Analog Out Options

The analog output connector on the ICS-1500 rear panel outputs an analog voltage signal proportional to the conductivity measured by the cell. The output is filtered using the selected data rise time (see Section C.9.1). The analog output can be connected to an analog-to-digital converter device, such as an integrator or a chart recorder.

The **Analog Out** options on the **DETECTOR** page (see Figure C-17) let you configure the output for your application.

- Output: Select Normal to output a signal corresponding to the offset conductivity reading from the detector (see <u>"Conductivity Readings"</u> on page C-8) and the selected Analog Out parameters. Use the other two settings to calibrate an analog-to-digital converter device. Select Zero to set the output signal to zero volts. Select Full Scale to set the output signal to the full-scale voltage (1000 mV).
- % Offset: To adjust the zero position of the analog output when it is plotted, enter a percentage in the % Offset field. The value entered is a percentage of the full-scale analog output. An offset allows a recording device to plot the signal if it becomes negative. The offset percentage does not affect the magnitude of the output signal.
- **Polarity**: Select the polarity of the analog output signal: positive (the default settings) or negative. In applications in which the analyte output is lower than the background conductance, the polarity must be negative to have peaks instead of dips on the chromatogram.
- **Range**: Select the range in microSiemens (µS) of a full-scale detector response. For the ICS-1500, the full-scale voltage is 1000 mV. For example, if the range is 100 µS, then 1 µS is equal to 10 mV from the analog output. The range to use depends on the conductivity readings expected for the application.

C.10 Information Page

The **INFORMATION** page displays the version numbers of the ICS-1500 control programs (Moduleware and Boot Block), the serial number of the ICS-1500, and the options that are installed in the ICS-1500. The **INFORMATION** page is displayed at start-up. You can open the page from the menu of pages at any time.

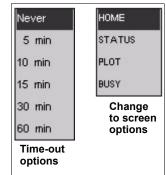
Moduleware Version	XX.XX.XX
Boot Block Version	XX.XX.XX
Serial Number	123456789
-Options Installed	

Figure C-18. Information Page

Moduleware is the firmware program installed on the ICS-1500 that controls instrument functions. Moduleware also sends status information and data to Chromeleon and receives control parameters from Chromeleon.

The Boot Block is the first program to be executed when the ICS-1500 power is turned on. It starts the Moduleware program.

C.11 Module Setup Page


The **MODULE SETUP** page lets you select options for the touch screen display and conductivity readings. To open this page, select **SETUP** from the menu of pages.

MODULE SETUP
Backlight Duration Always On
Screen Timeout, Never 🔽 change to HOME 🚺 screen
Make Offset 💟 conductivity the primary display value
MODULE SETUP▼

Figure C-19. Module Setup Page

Module Setup Options

- **Backlight Duration**: Select **2-hour time-out** to turn off the backlight after 2 hours if the touch screen is not used during that time. Select **Always On** to have the backlight remain on continuously.
- Screen Time-out: If the touch screen is not used during the selected time-out, the display will change to show the screen selected from the list. For example, if you select 5 min and BUSY, the display will change to the BUSY page (see Figure C-10) 5 minutes after the last time the touch screen was used. Select Never to always display the page that was used last.
- **Conductivity Display**: Select either **Offset** (the default setting) or **Total** as the primary conductivity display value. The selected value is

shown in large bold type on the **HOME** and **STATUS** screens, with the other value in smaller type.

C.12 Input/Output Page

The **INPUT/OUTPUT** page provides control of the ICS-1500 TTL inputs and TTL and relay outputs. To open this page, select **INPUT/OUTPUT** from the menu of pages. For details about relay and TTL control, see Appendix D.

hauta	INPUT/	OUTPUT	85.
TTL 1	Load/Inject 🔽	TTL 3 Pur	np On 🔽
TTL 2	Autozero 🔽	TTL 4 Ma	rk 🔽
	TTL Input Con	trol Type Nor	mal Edge 🔽
-Outputs -			
Relay 1	Open	TTL 1 5 \	/olts 🔽
Relay 2	Open	TTL 2 5 \	/olts
,		லு ∎	

Figure C-20. Input/Output Page

C.13 Diagnostic and Calibration Pages

Diagnostic and calibration functions can be performed either from the touch screen diagnostic and calibration pages or from the Chromeleon Wellness Panel. To open a touch screen diagnostic or calibration page, select **DIAGNOSTIC** from the menu of pages. The **DIAGNOSTIC** page opens (see Figure C-21). From there, you can select the type of diagnostic or calibration to perform.

For detailed instructions on how to perform the various calibration and diagnostic procedures, see <u>Section 5.1</u>.

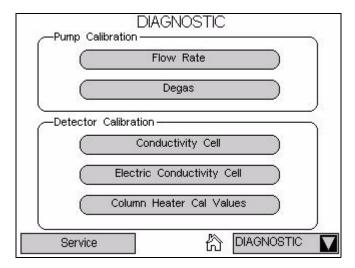


Figure C-21. System Diagnostic Menu Page

NOTE The Service button provides access to service functions that are performed only by Dionex personnel. An access code is required.

NOTE The ICS-1500 Ion Chromatography System is designed for use with IC (ion chromatography) and BioLC applications and should not be used for any other purpose. If there is a question regarding appropriate usage, contact Dionex.

D.1 TTL and Relay Connections

A 12-pin connector strip for TTL/relay control is located on the ICS-1500 rear panel. The connector provides two relay outputs, two TTL outputs, and four TTL inputs (see Figure D-1).

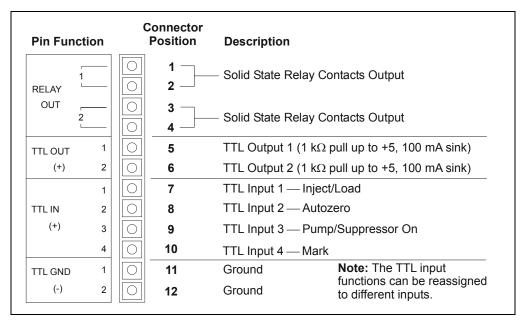


Figure D-1. TTL and Relay Connector on Rear Panel

Relay loads in excess of 200 mA or with included power supplies over 60 V may damage the relay drivers on the CPU.

The outputs can be used to control functions in external devices such as an autosampler or another Dionex module. When connected to a controlling device, the inputs can be programmed to perform the following ICS-1500 functions:

- Switch the injection valve position (load/inject)
- Perform an autozero command (set the conductivity to zero)
- Turn the pump on and off (also turns the suppressor on and off)
- Send a chart mark signal to the analog output. The mark is 10% of the fullscale voltage, and the duration is 0.5 seconds. A mark can be used, for example, to indicate the injection.

Relay outputs 1 and 2 can be programmed to switch any low-voltage control. Switched current must be less than 200 mA and 42 V peak.

Connecting a TTL or Relay

- Locate the twisted pair of wires (P/N 043598) and the 12-position connector plug (P/N 923687) (see <u>Figure D-2</u>) in the ICS-1500 Ship Kit (P/N 057905).
- 2. Follow these basic steps to connect the TTL or relays.
 - a. For each relay or TTL to be used, connect an

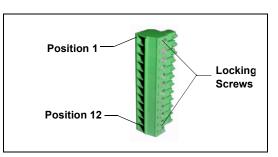


Figure D-2. 12-Position Connector Plug

active wire (red) and a ground wire (black) to the 12-position connector plug at the appropriate pin locations. Refer to <u>Figure D-1</u> or the label on the ICS-1500 rear panel for the connector pin assignments.

To attach a wire to the plug, strip the end of the wire, insert it into the plug, and use a screwdriver to tighten the locking screw. If necessary, multiple ground wires can be attached to a single TTL input/output ground pin.

When attaching wires to the connector plug, be careful not to allow stray strands of wire to short to the adjoining position on the connector.

b. Plug the connector into the 12-pin connector on the ICS-1500 rear panel.

- c. Connect the wires from the ICS-1500 connector plug to the TTL or relay connector pins on the other module(s). Additional connector plugs are provided with other Dionex modules.
 - NOTE Check the polarity of each connection. Connect signal wires to signal (+) pins and ground wires to ground (-) pins.
- 3. If you connected a TTL input, verify that the correct function is assigned to the input and that the correct input control type is selected. Select different settings if necessary. Input functions and control types are assigned from either the **INPUT/OUTPUT** touch screen page or Chromeleon (see Section D.1.1).

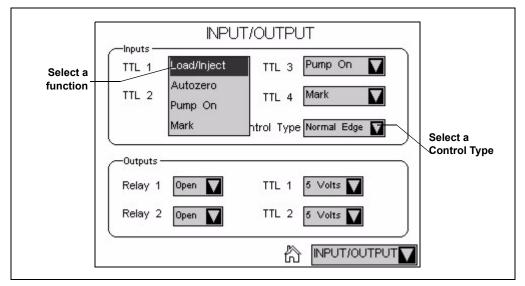
D.1.1 Selecting TTL Input Functions and Control Types

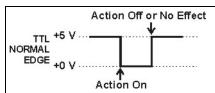
To select TTL input functions and the control type from Chromeleon, open the Chromeleon Server Configuration program and double-click the ICS-1500 icon under the timebase. Select the **TTL Inputs** tab (see Figure D-3).

Dionex ICS-1500 System	×
General Options Signals Error Levels Demo Chromatogram	Head Type & Limits Solvents State Devices TTL Inputs Trend Calibration Diagnostics
TTL Input <u>M</u> ode:	Normal edge
TTL Input Functions	
TTL Input <u>1</u> :	Load/Inject Valve
TTL Input <u>2</u> :	Autozero
TTL Input <u>3</u> :	Pump/Suppressor ON/OFF
TTL Input <u>4</u> :	Recorder mark

Figure D-3. ICS-1500 Server Configuration Properties: TTL Inputs

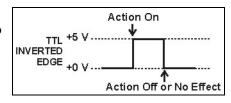
To select TTL input functions and the control type from the touch screen, go to the **INPUT/OUTPUT** touch screen page (see Figure D-4).

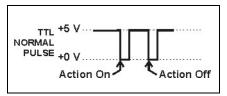



Figure D-4. Input/Output Page: Selecting TTL Functions

TTL Input Control Types

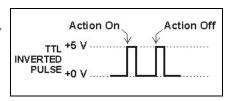
Normal EdgeThe ICS-1500 TTL inputs respond to four types of
signals to accommodate different controlling devices.
The default control type, Normal Edge, is compatible with
the output signals provided by Dionex modules.


If the device connected to the ICS-1500 does not send a normal edge signal, select the appropriate control type. Refer to the documentation provided with the controlling device and the information below to select the correct type.


 Normal Edge: In normal edge operation, the negative (falling) edge of a signal turns on the function. For example, for the Load/Inject function, the negative edge switches the injection valve position to Load.

The action of the positive (rising) edge depends on the function: For the **Load/Inject** function, the rising edge switches the injection valve to the Inject position. For the **Pump On** function, the rising edge turns off the pump (and suppressor). For **Autozero** and **Mark**, the rising edge has no effect.

- *Inverted Edge*: The inverted edge mode works identically to the normal edge mode except that the positive and negative edges are reversed in function.
- *Normal Pulse*: In normal pulse operation, the negative (falling) edge of the TTL signal is the active edge and the positive (rising) edge is ignored.



A pulse width of 50 ms or more

is guaranteed to be detected. A pulse width of 4 ms or less is guaranteed to be ignored. The action for pulse widths that are greater than 4 ms and less than 50 ms is undefined.

• *Inverted Pulse*: The inverted pulse mode operates identically to the normal pulse mode except that the positive and negative edges are reversed in function.

D.2 Controlling TTL and Relay Outputs

The ICS-1500 provides two TTL outputs and two relay contacts for control of functions in external devices, such as an integrator or autosampler. The relay outputs can be used to switch any low-voltage control. Switched current must be less than 200 mA and 60 V peak blocking. The relay-contact closures are normally open. When the relay is closed, current flows to the connected device.

Relay loads in excess of 200 mA or with included power supplies over 60 V may damage the relay drivers on the CPU.

The TTL outputs are normally at 5 volts. Setting a TTL output to 0 volts turns on the action in the connected device.

The TTL and relay output states can be controlled from Chromeleon, either by issuing direct control commands from the Chromeleon control panel or by including the commands in a control program. <u>Figure D-5</u> shows an example relay program command for controlling an AS40 autosampler.

S12A Produ	uction Test Chromatogram - Comma	ands	
m Production	Test Chromatogram		
	Flow =	29 1.50	
-2.300	Pump_ECD_Relay_1.Close	ed Duration=138	.00 ; For AS40 injection
0.000	Pump_ECD.Autozero ECD_1.AcqOn Pump_InjectValve.Injec	Relay 1 turned on to start the AS40 Load cycle and load the sample loop ctPosition	Relay 1 turned off after 138 seconds
15.000	ECD_1.AcqOff		
	End		
•			

Figure D-5. Example Program for AS40 Control

To control the TTL and relay output states from the touch screen, select **INPUT/OUTPUT** from the menu of pages. The **INPUT/OUTPUT** page appears (see Figure D-4).

- To set a relay, touch the relay field and select the desired state (**Open** or **Closed**). For example, if Relay 1 is connected to the Load input on an AS40 autosampler, touch the **Relay 1** field and select **Closed** to start the AS40 load cycle.
- To set a TTL outputs, touch the TTL field and select the desired state (5 Volts or 0 Volts).

D.3 Example Setup for Stand-Alone Operation

This section describes an example setup for *stand-alone operation* (operation without Chromeleon software) with an AS50 autosampler and a third-party analog-to-digital converter and controller. If your configuration includes different devices, use the following steps as guidelines and refer to your product documentation for specific connection details.

Verify the AS50 Configuration

Refer to <u>Section B.17.1</u> to verify that the AS50 meets the configuration requirements for use with the ICS-1500.

Connect the AS50 Autosampler

Follow the instructions in <u>Section B.17.2</u> to connect the AS50 autosampler to the ICS-1500 injection valve.

Connect the TTLs and Relays

- Locate two twisted pairs of wires (P/N 043598) and 12position connector plugs (P/N 923686) (see <u>Figure D-6</u>) in the ICS-1500 and AS50 Ship Kits.
- 2. Attach the wires to the connector plug positions indicated in Figure D-7.

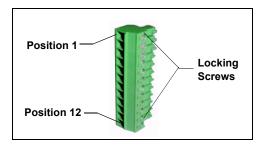


Figure D-6. 12-Position Connector Plug

To attach a wire to a connector plug, strip the ends of the wire, insert into the desired connector position, and tighten the locking screw with a screwdriver.

When attaching wires to the connector plug, be careful not to allow stray strands of wire to short to the adjoining position on the connector.

3. Plug the connector plugs into their respective TTL/Relay connectors on the rear panel of each module.

Make sure the red wires connect to active (+) pins on each module and the black wires connect to ground (-) pins.

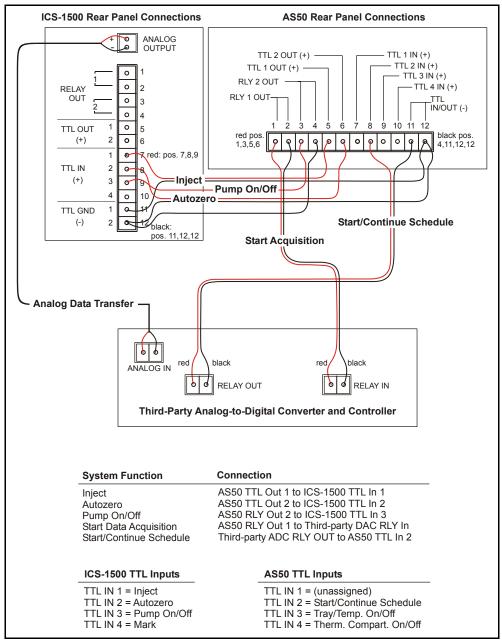


Figure D-7. Example Connections for Stand-Alone Operation

Assign ICS-1500 Input Functions

Go to the ICS-1500 **INPUT/OUTPUT** touch screen page and verify that the **Inject** function is assigned to TTL input 1, that Autozero is assigned to TTL input 2, and that the **TTL Input Control Type** is **Normal Edge** (see <u>Figure D-8</u>).

-Inputs -	INPUT/	OUTPI	JT
TTL 1	Load/Inject	TTL 3	Pump On
TTL 2	Autozero 🔽	TTL 4	Mark
l	TTL Input Con	trol Type	e Normal Edge 🔽
-Outputs -			
Relay 1	Open	TTL 1	5 Volts 🔽
Relay 2	Open	TTL 2	5 Volts
`		Ŕ	

Figure D-8. Input/Output Page

Enable AS50 Control of the Injection Valve

1. On the AS50 front panel, press **Menu** and **0** to go to the **TIME FUNCTION OUT** screen. In the **LOAD/INECT VALVE: TTL 1** field, select **ENABLED**.

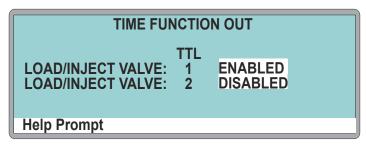


Figure D-9. AS50 Time Function Out Screen

2. Turn the AS50 power off and then back on.

You can now issue commands from the AS50 to switch the ICS-1500 injection valve position.

Connect the Analog Output

- 1. Locate the analog cable for the third-party analog-to-digital converter and controller.
- 2. Connect the analog input connector on the third-party controller to the **ANALOG OUTPUT** connector on the ICS-1500 rear panel (see Figure D-7).

Configure the ICS-1500 Analog Output

Go to the ICS-1500 **DETECTOR** touch screen page and select the settings shown in Figure D-10:

DE	TECTOR
Data Rise Time	2.00 🔽 sec
Conductivity Polarity	Normal 🔽
Analog Out	
Output	Normal
% Offset	0
Polarity	+
Range	100 🔽 µS
	🖧 DETECTOR

Figure D-10. Detector Page

Create an AS50 Method and Schedule

Figure D-11 is an example of AS50 method timed events that can be used with the TTL/Relay connections shown in Figure D-7.

		TIMED E			METH	
	VALVE	CSV	TTL1	TTL2	RLY1	RLY2
INIT	LOAD					
0.00	INJECT			1	1	1
	INJLUI					
0.50				U	U	1
Help P	rompt					

Figure D-11. Example AS50 Method for Stand-Alone Operation

Timed Event Notes:

- At time INIT, the injection valve is set to Load.
- At time 0.00, the injection valve is set to Inject, an autozero is performed (TTL2=1), the data acquisition mark is sent (RLY1=1), and the pump is turned on (RLY2=1).
- At time 0.5, TTL2 and RLY1 are switched back to 0 to be ready for the next run. RLY2 remains at 1 to keep the pump on.
- TTL1 does not need to be set in the timed events because the Load and Inject commands control the ICS-1500 injection valve automatically (see <u>"Enable</u> <u>AS50 Control of the Injection Valve" on page D-10</u>).

To run the above method, set up an AS50 schedule. The example in <u>Figure D-12</u> includes a four-point calibration (Lines 1 - 4) followed by two samples (Lines 5 and 6).

SCHEDU			EDIT	1	SA	VE TO	1	RI	JN 1
MISSIN	G VIAL	AC	TION:		SKIP				
	VIA	L#		IN,	J/	INJ			
LINE	STAR	T- E	ND	VI	AL	VOL(ul	L)	MET	HOD
1-4	1	-	4		3	25.0	<i>'</i>		1
5	5	-	5		1	25.0			1
6	6	-	6		1	5.0			1
Help P	rompt								

Figure D-12. Example AS50 Schedule for Stand-Alone Operation

E • Reordering Information

Part Number	Item
	Reservoirs
046548	2-L plastic reservoir assembly (includes stopper and cap)
039164	4-L plastic reservoir assembly (includes stopper and cap)
	Pump
057937	Primary pump head assembly
057938	Secondary pump head assembly
045721	Outlet check valve assembly, 10-32
045722	Inlet check valve assembly, 1/4-28
045994	Check valve cartridges
052840	Piston
055870	Piston seal
048722	Piston rinse seal
055752	O-ring for waste valve or priming valve
057945	Eluent valve
054578	10-cc syringe (for priming eluent lines)
	Sample Loop and Injection Valve
042857	25-μL sample loop
057968	Injection valve
024305	Luer adapter fitting, 1/4-28 (for manual injections)
016388	1-cc syringe (for manual injections)
057896	Injection valve rebuild kit
	Suppressors, Cell, and Column Heater
056116	AAES Anion Atlas Electrolytic Suppressor

Part Number	Item
056118	CAES Cation Atlas Electrolytic Suppressor
053946	ASRS-Ultra 4-mm Anion Self-Regenerating Suppressor
053949	CSRS-Ultra 4-mm Cation Self-Regenerating Suppressor
057985	DS6 heated conductivity cell
058060	Column heater assembly
059979	Column heater heat exchanger, 0.25-mm (0.010-in) ID tubing
060943	Column heater heat exchanger, 0.125-mm (0.005-in) ID tubing
058062	Column heater cover assembly
	Relay/TTL
923686	12-position connector plug
043598	Twisted pair of wires
	Miscellaneous
954745	IEC 127 fast-blow fuses, rated 3.15 amps
060494	USB cable, 5 m (16 ft)
060392	External USB hub
058053	Leak detector
	Maintenance Kits
055647	AS40/ASM preventive maintenance kit
	-
060581	AS50 preventive maintenance kit
057954	ICS-1500 preventive maintenance kit

F.1 How do I hook up an autosampler?

For instructions on how to connect the ICS-1500 to an AS50 autosampler, see <u>Section B.17</u> of this manual. To connect an AS40, see <u>Section B.18</u>. Also see the *AS50 Autosampler Operator's Manual* (Document No. 031169) or the *AS40 Automated Sampler Operator's Manual* (Document No. 034970). The manuals are included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

F.2 How do I print?

Click the Print toolbar button in Chromeleon (see Section 2.3).

F.3 Why are the retention times moving?

Retention times can shift if the pump flow is erratic or if the column or eluent is contaminated. See <u>Section 4.6</u> for pump flow rate troubleshooting. If a contaminated column is suspected, clean the column as instructed in the column manual. The column manual is included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

F.4 How do I adjust retention times?

Retention times are calculated during calibration. The Use Recently Detected Retention Time parameter in the Chromeleon QNT Editor (General tab) can be used to compensate for some types of retention time drifts; for example, evaporation of volatile components in pre-mixed solvents or an aging column. Refer to the Chromeleon Help or user's guide for details.

F.5 When should I remake standards?

Standards are used only for calibration and should always be made fresh (they have a lifetime of only one week).

F.6 When should I remake eluents?

Eluents should be remade every two or three weeks.

F.7 How do I start Chromeleon?

Click **Start** on the Windows taskbar, and then select **Programs >Chromeleon > Chromeleon**.

F.8 How do I delete data?

In the Chromeleon Browser, highlight the sequence you want to delete and then select **File >Delete**.

F.9 How do I back up data?

In Chromeleon, select **File >Export/Backup**. Back up the data and indicate the backup source.

F.10 How do I shut off the system?

In Chromeleon, click the **System Shutdown** button on the ICS-1500 Control Panel (see Figure 2-12). On the ICS-1500, turn off the power switch on the rear panel (see Figure 2-9).

F.11 How do I store columns?

Columns should be stored in eluent. See the column manual for complete instructions. The column manual is included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).

F.12 How do I know when a column is dirty?

See the troubleshooting section of the column manual.

F.13 How do I clean a column?

See the troubleshooting section of the column manual.

F.14 Why is the conductivity high?

Possible reasons for high conductivity include:

- The suppressor needs regeneration. See the suppressor manual for troubleshooting information. The suppressor manual is included on the Dionex Reference Library CD-ROM (P/N 053891), located in the ICS-1500 Ship Kit (P/N 057905).
- The cell is out of calibration. See Section 5.1.3 for calibration instructions.
- See <u>Section 4.12</u> for additional troubleshooting information.

Analytical Column

Synonymous with Separator Column.

Band Spreading

The broadening of the sample band as it travels through the column. Band spreading can also occur in the injection valve, detector cell, and interconnecting tubing.

Calibration Curve

A graph showing detector response in peak height or area versus analyte concentration.

Capacity Factor (k')

The number of column volumes of eluent, pumped through the column, required to elute an analyte. Capacity factor is a dimensionless measure of retention which is independent of column length or eluent flow rate. It is calculated as follows:

$$k' = \frac{t_r - t_o}{t_o}$$

Where: t_r = retention time

 t_0 = retention time of unretained solute (column void volume)

Cell Constant (k)

A factor determined experimentally by measuring the conductance (G) of a standard solution of known equivalent conductivity (k).

$$k = \kappa / G$$

The value of k depends upon the surface area of, and distance between, the electrode faces in the conductivity detector cell.

$$k = l/A$$

Where: l = length

A = area of one electrode (the other electrode is equal to the first)

Channeling

The preferential flow of liquid along more open, less resistant paths through the column packing. This causes **Band Spreading**.

Column Efficiency (N)

A measure of the *narrowness* of analyte bands as they elute from the column. High efficiency is desirable because resolution between closely spaced bands improves with greater efficiency. For a symmetrical (Gaussian) peak, column efficiency can be determined by the following:

$$N = 5.54(t_1/W_{1/2})^2$$

Where: t_1 = the peak retention time (in seconds)

 $W_{1/2}$ = the peak width at 1/2 height (in seconds)

Column efficiency is proportional to column length: for a given resin and column diameter, increasing the column length increases the column efficiency. Synonymous with **Theoretical Plates**.

Column Selectivity (a)

Describes the relative separation of the band maxima between two adjacent peaks. Selectivity can be determined by the following:

$$a = (t_2 - t_0)/(t_1 - t_0)$$

Where: t_1 and t_2 = retention time of components 1 and 2, respectively

 t_0 = retention time of unretained components (void volume)

Concentrator Column

A short column used to retain and concentrate analytes from a measured volume

of relatively clean sample. This allows large volumes of sample to be injected, lowering concentration detection limits.

Conductivity

A measure of the ease with which electrical current flows through a liquid contained between two opposite charged electrodes. Conductivity is a characteristic of ions in solution. Units are siemens.

Counterion

Ions carrying a charge opposite that of the sample ions (e.g., Na^+) may be the counterion of a Cl⁻ analyte. These ions preserve electrical neutrality in solution.

% Crosslink

Divinylbenzene content in a polystyrene/divinylbenzene (PS-DVB) resin; this contributes to the mechanical strength of the resin and determines chromatographic properties.

Equivalent Conductivity (λ)

The contribution of an ionic species to the total conductivity of a solution as measured in a standard cell having electrodes 1 cm^2 in area and exactly 1 cm apart.

Guard Column

A small column that prevents poisoning of the separator column by sorbing organic contaminants and removing particulates. It is filled with the same packing as the separator column. Synonymous with **Pre-Column**.

HETP (H)

<u>**H**</u>eight <u>**E**</u>quivalent to a <u>**T**</u>heoretical <u>**P**late. A measure of column efficiency which allows comparison between columns of different lengths.</u>

HETP = H = L/N

Where: L = the column length (in mm)

N = the number of theoretical plates

Ion-Exchange Capacity

The number of active ion exchange sites in a given weight or volume of resin; this is usually expressed in meq/g or meq/mL.

Ion-Exchange Resin

An insoluble polymer matrix containing fixed-charge exchange sites (anionic or cationic). IC resins are formed into small spherical particles (beads).

Packing

The material that fills a chromatographic column; usually a resin or silica-based material.

Pellicular Resin

A resin with a solid, nonporous core coated with a thin layer of more porous material. The exchange sites of pellicular ion exchange resins are located only on the surface layer of the bead. These resins have a low ion-exchange capacity.

Pre-Column

Synonymous with Guard Column.

Regenerant

A dilute acid or base that converts ion exchange sites in a MicroMembrane Suppressor back to the form that suppresses the eluent conductivity.

Resin

See Ion-Exchange Resin.

Resolution (R)

A measure of the separation between two sample components. This is expressed as the ratio of the distance between the two peak maxima to the mean value of the peak width at the baseline.

$$R = 2(t_2 - t_1)/(W_2 + W_1)$$

Where: t₁ and t₂ =the retention times of components 1 and 2, respectively

 W_1 and W_1 = the baseline width of peaks 1 and 2, respectively (measured in the same units as the retention time)

R is proportional to the square root of efficiency (N). A value of R = 1.5 represents "baseline separation" of the two peaks.

Retention Time

The time from injection to peak maximum; the basis for identification of a species in chromatographic analysis.

Separator Column

The column used to perform a chromatographic separation; also called an analytical column.

Siemens (S)

Unit measure of conductance; the reciprocal of the electrical resistance of a solution.

Suppressor

A device used to minimize eluent conductivity and convert sample species to a common form, thus increasing detection sensitivity.

Temperature Coefficient

The percent of change in the conductivity of a solution with a 1 °C change in temperature. Every solution has a characteristic temperature coefficient which is determined experimentally.

Theoretical Plates (N) See Column Efficiency.

Void Volume (V₀)

The volume occupied by the eluent in a packed column. This volume includes the volume between the injection valve and the column, as well as between the column and the detector cell. Unretained components are eluted in the void volume.

Symbols

% Offset (analog out), C-21

A

Adjusting the contrast, 2-2, C-1 Air particulate samples, 3-13 Air regulator, B-48 – B-49 Alarm conditions, 4-3 – 4-8 See also Error messages Ambient temperature, 4-19 Analog output, C-19 - C-20, D-2 % Offset, C-21 Configuring, C-20, D-11 Connections, D-11 Connector, 2-10 Full scale, C-21 Range, C-21 Analog-to-digital controller, D-11 Anion separations, 3-12 Applications, 3-6, D-1 AS40 Automated Sampler Installation, B-45 Sample injection, 3-18 Yearly maintenance, 3-24 AS50 Autosampler Connections for stand-alone operation, D-8 Enabling injection valve control, B-44, D-10 Installation, B-41 Method for stand-alone operation, D-11 Sample injection, 3-18 Schedule for stand-alone operation, D-11 Time Function Out screen, B-44, D-10 Yearly maintenance, 3-24 Atlas Electrolytic Suppressor, 2-9 See also Suppressor

Audit Trail, 2-19 Automated control, 2-14 Autosampler Sample injection, 3-18 See also AS40 Automated Sampler See also AS50 Autosampler Autozero, 2-20, 3-12, 3-20, C-8

B

Background conductivity High, 4-18 Offsetting, 3-12, C-8, C-10 Backlight Time-out, C-23 Backpressure, 2-26 Restriction in plumbing, 5-11 Troubleshooting, 4-15 Bar. C-16 Baseline Drift, 4-19 Equilibration, B-40 Noise, 2-13, 4-19, C-20 Stability, 2-30 Zeroing, C-8 Batch processing, 3-2 Starting, 3-22 See also Sample processing Blockages Liquid lines, 4-6, 5-11 Bottle See Reservoir Browser, 2-15, 3-5, B-52 Busy page, C-23

С

Cables AS40 Relay Control, B-45 Power cord, 5-36 USB. B-9 Calibration. 5-1 Conductivity cell, 5-5 Flow rate, 5-8 Vacuum degas assembly, 5-10 Cation separations, 3-12 Cell See Conductivity cell Cell calibration. 5-5 Cell drive. A-3 Cell heater. C-9 Check valves Cleaning procedure, 5-15 – 5-16 Replacement procedure, 5-15 – 5-16 Chromatogram, 1-3 Zeroing the baseline, C-8 Chromeleon, 2-14 Adding devices to a timebase, B-16 Alarm conditions, 4-3 Browser, 2-15, 3-5 Control Panel, 2-14, 3-20 Creating a sequence, 3-21 Degas options, 4-20 Direct control, 2-14 Error messages, 4-3 Installation, B-5, B-13 Interface, 2-14 License installation, B-5 – B-6 Menu, 2-14, 3-20 Programs, 2-14, 2-18, 3-18 - 3-21 Starting, 3-4, B-26 System properties dialog box, B-16 Timebase, 3-5 Toolbars, 2-14, 3-20 Using the touch screen with Chromeleon, C-4 Verifying communication, B-35 Wellness Panel, 5-1 Chromeleon Server

Starting, 3-4, B-13 Chromeleon Server Configuration program Starting, B-13 Timebase, B-15 Column heater, 2-8, 2-29 Home page control, C-8 Replacement procedure, 5-28 Specifications, A-4 Column heater alarms Column heater exceeds safe temperature, 4-3 Column heater open circuit, 4-3 Column heater short circuit, 4-3 Columns, 2-8 Cleaning, F-3 Contaminated, 4-17 Damage from IPA, 5-35 Installing, B-19 Storing, F-2 Commands Chromeleon, 2-14, 3-21, B-34 Component panel, 2-7 Computer Connections. B-9 Operating system requirements, B-5 Unpacking, B-4 Conductivity, C-8 Causes of high conductivity, F-3 Changing the display, C-23 Offset, C-8, C-23 Temperature effect, 2-30 Total, C-8, C-23 Conductivity cell, 2-9, 2-30 Calibrating, 5-5 Calibration constant, 5-25 High cell output, 4-18 Leaking, 4-10 No response, 4-18 Replacement procedure, 5-24 Setting the temperature, C-9 Specifications, A-3 Volume, 2-30

Conductivity cell specifications Active volume, A-3 Cell body, A-3 Electrodes, A-3 Maximum pressure, A-3 Conductivity polarity, C-20 Contacting Dionex, 5-1 Contamination Column, 4-16 – 4-17 Eluents, 4-16 Sample, 4-17 Standard, 4-16 Control Panel, 2-14, 2-16, 3-20 System Panel, 2-16 Wellness Panel, 2-16 Current, C-18

D

Daily maintenance, 3-23 Data Backing up, F-2 Deleting, F-2 Filtering, C-19 Saving, 3-20 – 3-21 Data acquisition, 3-20 Data analysis description, 1-3 Data rise time, B-47, C-19 - C-20 Decibel level, A-1 Degas tubing assembly See Vacuum degas assembly Degas calibration failed alarm, 4-4 Degassing eluents, 2-22, 3-6 Delay volume, A-2 Detection description, 1-3 Detector controls on Home page, C-8 See also Conductivity cell Detector page, C-19 Setting analog out options, C-20 Setting the data rise time, C-19 Detector specifications Cell drive, A-3 Linearity, A-3

Range, A-3 Temperature compensation, A-3 Diagnostic pages, C-25 Diagnostics, 5-1 Dimensions, A-1 Dionex Contacting, 5-1 Direct control, 2-14 Dongle, B-6 Drip tray, 2-8 DS6 Heated Conductivity Cell *See* Conductivity cell Duty cycle, 2-23, C-17

E

Elapsed time, C-8, C-10 Electrical specifications Fuses, A-1 Main power, A-1 Eluent Aqueous, 3-24, 4-13 Degassing, 2-22 Delivery process, 1-2 Filtering, 3-7 Preparing, 3-6 When to remake, F-2 Eluent bottle See Eluent reservoir Eluent level, 3-8, B-35, C-7 Eluent reservoir Connecting, 3-9, B-25 Filling, 3-8 Gas connection, B-48 Monitoring liquid level in, 3-8, B-35, C-7 Pressurization, B-49 Storage on top cover, 2-6 Eluent valve, 2-8, C-17 Replacing, 5-32 End-line filter See Filter, end-line

Environmental specifications Humidity, A-1 Operating pressure, A-1 Operating temperature, A-1 Equilibration time, 3-12 Error messages, 4-3-4-8Column heater exceeds safe temperature, 4-3 Column heater open circuit, 4-3 Column heater short circuit, 4-3 Degas calibration failed, 4-4 Hardware not present, 4-4 Leak sensor wet, 4-4 Load/inject valve error, 4-5 Option not installed, 4-5 Pressure slope calibration error, 4-5 Pump motor lost control, 4-5 Pump over pressure, 4-6 Pump pressure hardware error, 4-6 Pump under pressure, 4-7 Suppressor not connected, 4-8 Suppressor over current, 4-7 Suppressor over power, 4-8 Suppressor stopped for zero flow rate, 4-8

F

Facility requirements, B-1 Filter, end-line Bacterial contamination, 3-24, 4-13 Dirty or clogged, 3-24, 4-12 Installation, 3-7 Filtering data, C-19 Fittings Leaking, 4-9 Replacing, 5-13 Requirements, 5-13 Flow rate, 2-8, A-2, C-6 Calibration, 5-8 Troubleshooting, 4-14 Flow schematic, 2-12 FROM PC USB connections, B-9

Front panel, 2-1 Specifications, A-2 See also Touch screen Full-scale analog output, C-21 Fuses Replacement procedure, 5-36 Requirements, A-1

G

Gas separator waste tube, B-23 Gas source Connection, B-48 Installation, B-48 Pressure requirement, B-48 Ghosting, 4-16 Guard column, 2-8, B-19 Installation, B-20

H

Hardware not present error, 4-4 Heater Column, 2-29 High pressure alarm, 4-6 High pressure limit, A-2 Home page, 2-2, C-1, C-6, C-8 – C-9 Column Heater control, C-8 Detector controls, C-8 Injection valve controls, C-8 Pump controls, C-6 Humidity limits, A-1

I

Information page, C-22 Injecting samples, 3-16 Via autosampler, 3-18 Via syringe, 3-17 Via vacuum syringe, 3-18 Injection port, 2-1 Injecting via syringe, 3-17 Injection valve, 2-8, 2-27 Controlling with an AS50, B-44, D-10 Home page controls, C-8 Leaking, 4-10 Plumbing connections, 2-27 Rebuilding, 5-14 Specifications, A-3 Troubleshooting, 4-5 Input/Output page, C-24, D-10 Installation, B-1 – B-54 Adding devices to a timebase, B-16 Analog output connection, D-11 AS40 autosampler, B-45 AS50 Autosampler, B-41 Assigning devices to a timebase, B-15 Assigning USB devices, B-14 Chromeleon, B-5, B-13 Columns, B-19 Computer, B-4 Eluent reservoir, B-25, B-49 Equilibrating the system, B-40 Gas separator waste tube, B-23 Gas source. B-48 Guard column. B-20 Key code, B-8 Operating system requirements, B-5 Operational status verification, B-40 PC connections. B-9 Plumbing, B-25 Power connection, B-11 Priming, B-37 – B-39 Separator column, B-20 Software license, B-5 – B-6 Stand-alone operation setup, D-8 – D-9 Starting the ICS, B-12 Suppressor, B-21 TTL and relay connections, D-1 - D-2Unpacking, B-2 USB connections, B-9-B-10 Waste lines, B-23 Installation troubleshooting, B-54 Installed options, C-22 Inverted edge TTL input control, D-5 Inverted peaks, C-20

Inverted pulse TTL input control, D-5 Ion chromatography Overview, 1-1 Ion exchange, 1-3 Isocratic delivery system, 1-2 Isopropyl alcohol, 5-35

K

Key code (Chromeleon), B-6

L

LCD screen, 2-1 – 2-2, C-1 Specifications, A-2 See also Touch screen Leak sensor, 2-8 Leak sensor wet alarm, 4-4 Replacement, 5-34 Leaks Cell, 4-10 Fittings, 4-9 Injection valve, 4-10 Liquid, 4-9 Pressure transducer, 4-10 Pump check valve, 4-9 Pump head, 4-10 Pump head waste valve, 4-10 Pump piston seal, 4-10 Suppressor, 4-10 LED, A-2 License (Chromeleon), B-5 – B-6 License server (Chromeleon), B-6 Linearity requirements, A-3 Liquid leaks, 4-9 See also Leaks Load/inject valve alarm, 4-5 Loading samples, 3-16 Local Mode, C-9 Locked Remote mode, C-4 Loop See Sample loop

Low pressure limit, A-2

M

Main power receptacle, 2-11 Maintenance, 3-23 Daily, 3-23 Ongoing, 3-23 Weekly, 3-24 Yearly, 3-24 Manual sample processing, 3-2 MicroMembrane Suppressor, 2-9 *See also* Suppressor Module Setup page, C-23 Moduleware, C-22 MPa, C-16

Ν

Nitrite in samples, 3-13 Noise, baseline, C-20 Normal edge TTL input control, D-4 Normal pulse TTL input control, D-5

0

Offset conductivity, C-23 Offset percentage (analog out), C-21 Offsetting background conductivity, 3-12, C-8 Operating features, 2-1 Operating pressure, A-1 **Operating** ranges Cell heater, 2-9, C-9 Column heater, 2-8, C-8 Flow rate, 2-8, C-6 Operating system requirements, B-5 Operating temperature, A-1 Operation Equilibration time, 3-12 Overview, 3-1 Priming, 3-10, 5-35, B-39 Reservoir setup, 3-6

Sample preparation, 3-13 Sample processing, 3-2 Setting operating conditions, 3-11 Starting Chromeleon, 3-4 System power-up, 3-3 Operational status verification, 3-12 Option not installed error, 4-5 Options installed, C-22 Oven See Column heater Overview, 1-4

P

Panels Chromeleon Control Panel, 2-14, 3-20 Chromeleon Wellness Panel, 5-1 Component panel, 2-7 Parameters Chromeleon operating commands, 2-14, 3-21, B-34 PC *See* Computer

Peak ghosting, 4-16 Peak height Effect of rise time on, C-20 Reproducibility, 2-30 Troubleshooting, 4-17 Peak shape, C-20 Peak width. C-20 Peaks Effect of rise time on, C-20 Extraneous (ghosting), 4-16 Inverted, C-20 Reversed. C-20 - C-21PEEK Conductivity cell body, 2-30 Physical specifications Decibel level. A-1 Dimensions, A-1 Weight, A-1

Piston seals Replacement procedure, 5-17 – 5-18, 5-20 - 5-21Pistons Replacement procedure, 5-21 Plot offset, C-10 Plot page, C-9 - C-10Elapsed time, C-10 Plot offset, C-10 Range, C-10 Plotting detector output, 2-21, C-10 Plumbing Columns and suppressor, B-25 Injection valve, 5-14 Replacing tubing and fittings, 5-13 Troubleshooting, 5-11 Polarity Selecting the conductivity polarity, C-20 Power Turning on, 3-3, B-12 Power cord, 5-36, B-11 Power receptacle, 2-11, B-11 Power requirements, A-1 Power-up conditions, 3-3 Pressure Home page display, C-6 Limit, 4-7, C-6, C-16 Pump operating specifications, A-2 System, 4-6 – 4-7, C-16 Unit (selecting), C-16 Pressure ripple, A-2 Pressure slope calibration error, 4-5 Pressure transducer, 2-8, 2-26 Leaking, 4-10 System backpressure, 2-26 Pressurizing Eluent reservoir, B-49 Prime button, C-7 Priming, 3-10, 5-35, B-37 – B-39 Pump is out of prime, 4-12 With a syringe, B-37 With isopropyl alcohol, 5-35 With the Prime button, B-39 Priming valve

Opening, 2-25 O-ring replacement procedure, 5-22 Printing, F-1 Processing samples, 3-2, 3-20 - 3-21Automatically (batch), 3-2, 3-21 Manually, 3-2, 3-20 Product warranty, 5-1 Program time, 2-18 Programs (Chromeleon), 2-14, 2-18, 3-18 -3-21 Run time, 2-18 PSI, C-16 Pulse damper, 2-13, 2-26 Pump, 2-24 Flow rate, 2-8, C-6 Home page controls, C-6 Leaks, 4-10 Operating pressure, A-2 Over pressure alarm, 4-6 Primary pump head, 2-24 Priming, 3-10, B-37 Priming problems, 4-11 Secondary pump head, 2-25 Selecting the pressure unit, C-16 Setting pressure limits, C-16 Troubleshooting, 4-13 Under pressure alarm, 4-7 Pump check valve leaking, 4-9 Pump components, 2-24 Pump degas See Vacuum degas assembly Pump head waste valve Leaking, 4-10 O-ring replacement procedure, 5-22 Pump heads, 5-15 Pump motor lost control alarm, 4-5 Pump page, C-15 Changing the pressure unit, C-16 Setting degas parameters, C-16 Setting pressure limits, C-16 Pump pressure hardware error, 4-6 Pump priming valve O-ring replacement procedure, 5-22 Pump specifications

Flow rate, A-2 Operating pressure, A-2 Type, A-2

R

Range, C-10, C-21 Rear panel, 2-10 Analog output connector, 2-10 Power receptacle, 2-11 USB connections, 2-10 Rebuilding the injection valve, 5-14 Recorders Analog output setting, C-21 Relay connections AS40. B-45 Rear panel connector, 2-11, D-1 Relay outputs Controlling, D-5 Voltage and current specifications, D-2 Remote Mode, C-9 Reordering information, E-1 Reproducibility, 2-30 Reservoir Connecting, 3-9 Filling, 3-8 Monitoring liquid level in, 3-8, B-35 Storage on top cover, 2-6 Restriction in liquid lines, 4-6, 5-11 Retention time Adjusting, F-1 Moving, F-1 Troubleshooting, 4-17 Reverse peaks, C-20 Rise time. C-19 Run time, 2-18 Running samples, 3-20 See also Processing samples

S

Safety messages, 1-6

Sample loop, 2-8, 2-27 Changing, 5-13 Injecting, 2-27 Injection valve connections, 2-27, 5-14 Loading, 2-27 Reordering, E-1 Sample processing, 3-2, 3-20 – 3-21 Batch, 3-2, 3-21 Manual, 3-2, 3-20 With Chromeleon, 3-20-3-21 Samples Collecting and storing, 3-13 Diluting, 3-15 Filtering, 3-13 Injecting, 3-16, 3-18 Loading, 3-16 Pretreating, 3-13 Saving data, 3-20 – 3-21 Schematic Flow. 2-12 Seal replacement, 5-18, 5-20 - 5-21 Selectivity Troubleshooting, 4-17 Self-Regenerating Suppressor, 2-9 See also Suppressor Separation process, 1-3 Separator column, 2-8, B-19 Installation, B-20 Sequence, 2-14 Creating, 3-21 Sequence Wizard, 3-21 Serial number, B-16 Server Configuration program AS50 configuration properties, B-18 Starting, 3-4, B-13 Timebase, B-15 Server Monitor, B-6 Service chase, 2-6, 2-9 Service procedures, 5-16 Check valve cleaning, 5-15 - 5-16Check valve replacement, 5-15 Conductivity cell replacement, 5-24 Fuse replacement, 5-36 Injection valve rebuilding, 5-14

Isolation of liquid lines restriction, 5-11 Leak sensor replacement, 5-34 Piston replacement, 5-21 Piston seal replacement, 5-17 Priming valve O-ring replacement, 5-22 Rebuilding the injection valve, 5-14 Replacing tubing and fittings, 5-13 Suppressor replacement, 5-27 Tubing and fittings replacement, 5-13 Waste valve O-ring replacement, 5-22 Sharable device, B-16 Signal-to-noise ratio, C-20 Software license, B-5 – B-6 Specifications Column heater, A-4 Conductivity cell, A-3 Electrical, A-1 Environmental, A-1 Injection valve, A-3 LCD touch screen, A-2 Physical, A-1 Pump, A-2 Vacuum degas assembly, A-3 Stand-alone operation, B-44, D-8 - D-11 Analog output connection, D-11 AS50 setup, B-44, D-10 – D-11 Example connections, D-9 TTL and relay connections, D-8 Standards When to remake, F-2 Starting Chromeleon, B-26 Status page, C-9, C-11 Sulfite in samples, 3-13 Suppression description, 1-3 Suppressor Controlling the current to, 2-21, C-18 Description, 2-9, 2-30 Installation, B-21 Leaking, 4-10 Replacement procedure, 5-27 Selecting the type, C-18 Suppressor alarms Suppressor not connected, 4-8 Suppressor over current, 4-7

Suppressor over power, 4-8 Suppressor stopped for zero flow rate, 4-8 Suppressor page, C-18 Syringe injection, 3-17 Vacuum, 3-18 System Shutdown, F-2 Startup, 3-3 Status, 3-12 System backpressure, 2-26 System components Descriptions, 2-22 System Control Panel, 3-5, B-52 See also Control Panel System overview, 1-4 System properties dialog box, B-16

T

Technical Support, 5-1 Temperature Cell heater, 2-30, C-9 Column heater, 2-8, 2-29, C-8 Minimizing the effect of variations, 2-30 Temperature compensation, 2-30, A-3 Time. 2-18 Timebase (Chromeleon), 3-5 Adding devices to a timebase, B-16 – B-17 Assigning the ICS to a timebase, B-13 – B-15 Time-out (screen), C-23 TO MODULE USB port connections, B-10 Top cover. 2-6 Total conductivity, C-8, C-23 Touch screen, 2-1, C-1 Adjusting the contrast, 2-2, C-1 Number keypad, 2-3, C-2 Operation, 2-2, C-1 Specifications, A-2 Time-out, C-23 Using with Chromeleon, C-4

Touch screen pages Busy page, C-23 Detector page, C-19 Diagnostic pages, C-25 Home page, 2-2, C-1, C-6, C-8 – C-9 Information page, C-22 Input/Output page, C-24, D-10 Module Setup page, C-23 Overview, C-5 Plot page, C-9 - C-10Pump page, C-15 Status page, C-9, C-11 Suppressor page, C-18 Troubleshooting, 4-1 Alarm conditions, 4-3 Baseline noise or drift, 4-19 Calibrations, 5-1 Diagnostics, 5-1 Error messages, 4-3 Excessive backpressure, 4-15 Flow rate, 4-14 High cell output, 4-18 Installation, B-54 Liquid leaks, 4-9 No cell response, 4-18 Peak ghosting, 4-16 Peak height, 4-17 Pump, 4-11 – 4-13 Retention time, 4-17 Selectivity, 4-17 Vacuum degas assembly, 4-20 TTL and relay connector, D-1 Connection instructions, D-2 Pin assignments, D-1 TTL inputs Assigning functions to, D-4, D-10 Control type, D-10 Default function assignments, D-2 Rear panel connector, 2-11 TTL outputs Controlling, D-5 Rear panel connector, 2-11

Tubing Replacing, 5-13 Requirements, 5-13 Routing clips, 2-11 Tubing connections Isolating a restriction, 4-6, 5-11 TUV, 1-8

U

Unassigned USB Devices, B-13 Unpacking, B-2 Computer, B-4 USB cable, B-10 USB connections, 2-10, B-9 – B-10 Unassigned devices, B-13

V

Vacuum degas assembly, 2-22 Calibration, 5-10 Components, 2-22 Fails to run, 4-20 Priming, B-38 Setting operating parameters, C-16 Specifications, A-3 Troubleshooting, 4-11 Valve See Eluent valve See Injection valve Version number, C-22

W

Warranty, voiding, 5-1 Waste lines Blocked, 4-9 Connection, B-23 Connection to AS50, B-43 Waste valve, 2-25 Opening, 2-25, 5-17 O-ring replacement procedure, 5-22 Water samples, 3-13 Weekly maintenance, 3-24 Weight, A-1 Wellness Panel, 2-16, 5-1

Y

Yearly maintenance, 3-24

Z

Zero position (analog out), C-21 Zeroing the baseline, C-8